- Zhoulan Yin, Xinhai Li, Qiyuan Chen. Study on the kinetics of the thermal decompositions of ammonium molybdates // Thermochimica Acta. 2000. Vol. 353. P. 107—110.
- 12. *Thomazeau C., Martin V., Afanasiev P.* Effect of support on the thermal decomposition of (NH₄)₆Mo₇O₂₄·4H₂O in the inert gas atmosphere // Applied Catalysis A: General. 2000. Vol. 199. P. 61–72.

УДК 66.092.81 + 66.097.3

ОПЫТ ПРОМЫШЛЕННОГО ПРОИЗВОДСТВА И ЭКСПЛУАТАЦИИ НОВЫХ КАТАЛИЗАТОРОВ РИФОРМИНГА ПР-81 И ШПР-81

© 2013 г. М.Д. Смоликов^{1,2}, Д.И. Кирьянов¹, К.В. Колмагоров¹, И.Е. Удрас¹, Е.В. Затолокина¹, А.С. Белый^{1,2}

Введение

Более 25 лет в Институте проблем переработки углеводородов СО РАН (до 2004 г. — Омский филиал Института катализа СО РАН) проводятся фундаментальные работы по изучению катализаторов риформинга на основе системного подхода к конструированию катализаторов [1]. Результатом работ явилось создание и внедрение в промышленность серии полиметаллических катализаторов риформинга ПР. Производство катализаторов ПР-50, ПР-51 освоено в промышленном масштабе на технологической линии ЗАО «Промышленные катализаторы» (г. Рязань) в период 1992—1999 гг. в количестве 100 т (4 партии) [2]. В период 2003—2006 гг. в ЗАО «Промышленные катализаторы» на модернизированной технологической линии освоено производс-

тво катализатора марки ПР-71 в количестве 170 т (4 партии) [3], который превзошел предыдущие версии по активности и селективности [4]. Опыт промышленной эксплуатации катализаторов ПР-50, ПР-51 [5—7] и ПР-71 [8] показал, что они обеспечивают производство компонента бензина с октановым числом 95—98 ИМ и выходом 85—89 мас.%. Сравнение катализаторов серии ПР с импортными аналогами, по данным эксплуатации на НПЗ России, продемонстрировало, что они находятся на близком уровне, а по некоторым показателям отечественные катализаторы превосходят импортные.

В настоящей статье представлен опыт промышленного производства и эксплуатации новых отечественных катализаторов риформинга ПР-81 и ШПР-81, разработанных в ИППУ СО РАН.

Смоликов М.Д. – канд. хим. наук, ст. науч. сотрудник Института проблем переработки углеводородов СО РАН. Тел.: (3812) 67-33-34. E-mail: smolikov@ihcp.oscsbras.ru

Кирьянов Д.И. – технолог того же института. Тел. тот же.

Колмагоров К.В. – ведущий технолог того же института. Тел. тот же. E-mail: kolmagorov@ihcp.ru

Удрас И.Е. – мл. науч. сотрудник того же института. Тел. тот же. *E-mail: udras@ihcp.oscsbras.ru*

Затолокина E.B. – мл. науч. сотрудник того же института. Тел. тот же. E-mail: ezat@ihcp.oscsbras.ru

Белый А.С. – д-р хим. наук, зав. лабораторией того же института. Тел. тот же. E-mail: belyi@ihcp.oscsbras.ru

Освоение технологии промышленного производства катализаторов ПР-81 и ШПР-81

Технология промышленного производства новых катализаторов риформинга осваивалась в период 2010—2012 гг. на технологической линии ОАО «Ангарский завод катализаторов и органического синтеза» НК «Роснефть». В настоящее время производство катализаторов серии ПР-81 реали-

¹ Институт проблем переработки углеводородов СО РАН, г. Омск

² Омский государственный технический университет

зуется на основе порошковой технологии по двум вариантам: а) с использованием порошка гидроксида алюминия, полученного из продукта переосаждения отечественного тригидрата алюминия; б) с использованием готового порошка гидроксида алюминия, произведенного фирмой Sasol по алкоголятной технологии.

Технология производства катализатора ШПР-81 основана на использовании готового модифицированного сферического носителя γ -Al₂O₃, произведенного фирмой Sasol по техническому заданию ИППУ СО РАН.

В результате были наработаны четыре партии катализаторов:

- -2 т ПР-81A для установки ЛП-35-11/40 OOO «Пурнефтепереработка» НК «Роснефть», 2010 г.;
- -30 т ПР-81F для установки Л-35-6 OAO «Газпром нефтехим Салават», 2011 г;
- 21 т ПР-81А и 25 т ШПР-81 для установки Л-35-11/600 ОАО «Газпромнефть Омский НПЗ», 2012 г.

В табл. 1 приведены основные характеристики катализаторов ПР-81 и ШПР-81 в сравнении с предыдущими версиями.

Из табл. 1 следует, что катализаторы ПР-81А и ШПР-81 по химическому составу (содержание платины, рения и хлора) являются аналогами ПР-51 и ПР-71, но обладают повышенной прочностью (1,8—2,2 против 1,2—1,5 кг/мм соответственно) и пониженным содержанием примесей железа и оксида натрия. Катализатор ПР-81А имеет большую (на 7—8%), а ШПР-81— меньшую (на 10—11%) насыпную

массу по сравнению с ПР-51 и ПР-71. Катализатор ПР-81F предназначен для замены устаревших аналогов АП-56 и REF-24 и обладает пониженным содержанием платины (0,35 против 0,50 и 0,55 мас.% соответственно) и повышенной механической прочностью (1,8—2,2 против 1,0 и 1,2 кг/мм соответственно).

Опыт промышленной эксплуатации катализаторов ПР-81 и ШПР-81

Наибольший опыт эксплуатации катализатора ПР-81 накоплен на установке ЛП-35-11/40 ООО «Пурнефтепереработка» НК «Роснефть» в период 2010—2013 гг. Основные показатели представлены в табл. 2.

В ходе первого цикла эксплуатации в результате пуска установки на негидроочищенном сырье (15 ррт серы) произошло отравление катализатора в головном реакторе блока риформинга, что привело к снижению октанового числа риформата в течение цикла с 94,5 до 91,5 (ИМ). После проведения регенерации и десульфатации катализатора, во втором цикле, он стабильно обеспечивал жесткость процесса с ИОЧ 95,0—95,5 при более низких (на 8— 10 °C) входных температурах и повышенной селективности процесса: концентрация водорода в ВСГ была на 4-5 об.%, а выход риформата — на 1-2 мас. % выше. В ходе третьего цикла эксплуатации достигнуты лучшие результаты — при сохранении входных температур на уровне 460 °C октановое число риформата составило 95,5-96,0 (ИМ), кон-

Таблица 1 Основные физико-химические характеристики катализаторов серий ПР и ШПР

Показатель	ПР-50	ПР-51	ПР-71	ПР-81А	ПР-81F	ШПР-81
Содержание, мас.%:						
платины	0,35	0,25	0,25	0,25	0,35	0,25
рения	0,35	0,30	0,30	0,30	-	0,30
хлора (фтора)	1,0	1,0	1,0	1,0	(0,3)	1,0
железа	0,02	0,02	0,02	< 0,01	< 0,01	< 0,01
оксида натрия	0,02	0,02	0,02	0,01	0,01	0,01
Диаметр, мм	2,8	2,8 (1,6)	1,6	1,6	1,6	1,7
Коэффициент прочности, кг/мм (кг/см ²)	1,2-1,5	1,2-1,5	1,2-1,5	1,8-2,1	1,8-2,1	(240–270)
Насыпная масса, кг/м ³ (плотная загрузка)	670-680	670-680	670-680	720–730	720–730	610-620

Таблица 2 Показатели промышленной эксплуатации катализаторов ПР-81 на установке ЛП-35-11/40 000 «Пурнефтепереработка» НК «Роснефть» в период 2010–2013 гг.

Показатель	I цикл 2010-2011		II цикл 2011-2012		III цикл 2012	
	Начало	Конец	Начало	Конец	Начало	Июль 2013
Фракционный состав сырья, °С НК/50%/КК	105/124/179		105/124/178		105/123/180	
Углеводородный состав, П/Н/А [*] , мас.%	47/42/11		47/40/13		48/38/14	
Объемная скорость подачи сырья, ч $^{-1}$	1,3-1,5		1,3-1,4		1,3-1,5	
Давление, МПа	1,4-	.,4–1,5 1,4		-1,5	1,4-1,5	
Температура на входе в реакторы, °С	467	467	458	458	460	462
Средняя температура по слою катализатора**, °С	450	451	442	444	442	444
Концентрация водорода в ВСГ, об.%	79–80	74–75	84-85	83-84	87–88	84-85
Выход стабильного риформата, мас.%	88-	88–90 89–92		-92	89–92	
Содержание ароматических, мас.%	52-53	49-50	54-56	54-56	55-57	55-57
Содержание бензола, мас.%	4,0-4,5***	1,0-1,2	1,2-1,4	1,0-1,2	1,0-1,2	1,0-1,2
Октановое число, ИМ	94,5	91,5	95,3	95,0	95,5	95,7
Рабочий цикл, мес.	12		12		13 (продолжается)	

^{*}П/Н/А – парафины/нафтены/ароматические углеводороды.

Таблица 3 Состав (мас.%) стабильного риформата при использовании катализаторов ПР-71 и ПР-81 в режиме жесткости процесса с ИОЧ 96

Катализатор	Изобутан	<i>н</i> -Бутан	Изопентан	<i>н</i> -Пентан	ΣC_{4-5}	ΣC_{6-8}	Нафтены	Ароматические углеводороды
ПР-71	0,9	1,5	2,5	2,4	7,3	28,7	2	62
ПР-81	3,5	3,5	4,5	3,5	15,0	25,0	3	57

центрация водорода в ВСГ достигла 86—88 об.% при сохранении высокого выхода риформата — 89—92 мас.%. В результате было принято решение о продлении межрегенерационного цикла до двух лет.

Следует подчеркнуть, что жесткость процесса риформинга с ИОЧ 95—96 достигнута при входных температурах реакторов блока риформинга на 25—30 °C ниже, чем при эксплуатации ПР-50, ПР-51 [5—7] и ПР-71 [8]. Кроме того, содержание ароматических углеводородов в стабильном риформате значительно ниже (при равной жесткости процесса). Для сравнения в табл. 3 и 4 приведены составы стабильного риформата и ВСГ, полученные на катализаторах ПР-71 и ПР-81 в режиме жесткости процесса риформинга с ИОЧ 96.

Из данных табл. 3 следует, что при использовании катализатора ΠP -81 в составе стабильного риформата содержание легких парафинов фракции C_4 — C_5 в два раза выше, а ароматических углеводородов — на 5 мас.% ниже, чем в случае ΠP -71.

Данные табл. 4 показывают, что при одинаковой концентрации водорода в ВСГ (на уровне 85 об.%) доля газов C_3 — C_4 на катализаторе ПР-81 значительно выше, чем на катализаторе ПР-71, — число крекинга составляет 0,5 и 2,6, соответственно.

Следует отметить, что катализатор ПР-81 был приготовлен на основе носителя с повышенной кислотностью путем введения специального промотора, что привело к преимущественному крекингу парафинов C_{7+} до легких парафинов C_{3} — C_{6} ,

^{**} Расчетные данные.

^{***} На сырье с температурой н. к. 94 °С.

Таблица 4

Состав (об.%) водородсодержащего газа при использовании катализаторов ПР-71 и ПР-81
в режиме жесткости процесса с ИОЧ 96

Катализатор	Водород	Метан	Этан	Пропан	Изобутан	<i>н</i> -Бутан	Число крекинга*	
ПР-71	85	6,4	4,5	2,9	0,7	0,5	2,6	
ПР-81	85	3,2	2,1	6,5	2,0	1,2	0,5	
* Число крекинга = (метан + этан) / (пропан + бутаны).								

Таблица 5 Показатели промышленной эксплуатации катализаторов ПР-81F и комбинации ПР-81A + ШПР-81

Показатель		35-6 ефтехим Салават»	Л-35-11/600 ОАО «Газпромнефть-ОНПЗ»		
	I цикл	II цикл	I цикл	II цикл	
Фракционный состав сырья, °C НК/50%/КК	62/85/118	53/80/110	86/117/180	88/119/181	
Углеводородный состав, П/Н/А, мас.%	77/18/5	77/19/4	50/40/10	50/41/9	
Объемная скорость подачи сырья, ч $^{-1}$	1,0-1,2	1,4-1,6	0,9-1,1	1,0-1,1	
Давление, МПа	1,5-1,6	1,5-1,6	2,4	2,4	
Температура на входе в реакторы, °С	460–465	465-480	498-502	498-500	
Средняя температура по слою катализатора, °C	440-450	445-460	480-488	480-482	
Концентрация водорода в ВСГ, об.%	86-90	87-90	78-80/75 [*]	80-82	
Выход стабильного риформата, мас.%	-	_	86/84*	85-86	
Содержание ароматических углевородов, мас.%	28-32	28-30	63-65	63-65	
Содержание бензола, мас.%	7–10	15-20	4,5-5,0	4,5-5,0	
Октановое число, ИМ	-	-	95-97	95–97	
Рабочий цикл, мес.	12	10**	9	3**	

^{**} Цикл продолжается.

которые имеют более высокие октановые числа: 80-100 против 0-20 (ИМ). Эти реакции протекают при температурах 450-460 °C и наряду с реакциями дегидрирования нафтенов обеспечивают жесткость процесса с ИОЧ 95-96, при этом риформат содержит пониженное количество ароматических углеводородов, что позволяет производить товарные автобензины класса 5 с долей риформата до 70 об.%. Кроме того, повышенное содержание легких парафинов C_4-C_5 в риформате обеспечивает высокое давление насыщенных паров (80-100 кПа), что очень важно при использовании бензина в условиях Крайнего Севера.

В табл. 5 представлены показатели промышленной эксплуатации катализатора ПР-81F на уста-

новке Л-35-6 (Салават, с октября 2011 г.) и комбинации катализаторов ПР-81A и ШПР-81 на установке Л-35-11/600 (Омск, с мая 2012 г.).

Сырье установки Л-35-6 характеризуется значительным колебанием фракционного состава и повышенным содержанием парафинов (см. табл. 5). Кроме того, в реактор Р-5 (используется для гидрирования олефинов перед блоком экстракции ароматических углеводородов) дополнительно направляется легкая часть риформата с установки Л-35-11/1000, которая содержит 2—3 мас.% бензола и 40—42 мас.% толуола. Таким образом, состав смешанного риформата зависит как от исходного сырья, так и от количества добавленного легкого риформата, поэтому содержание бензола меняется в широких пределах —

от 7 до 20 мас.%. В целом, установка работает в мягком режиме при входных температурах по реакторам на уровне 460-480 °С, при этом концентрация водорода в ВСГ составляет 86-90 об.%, а содержание ароматических углеводородов в катализате — 28—32 мас.%. Следует подчеркнуть, что катализатор ПР-81F эксплуатируется в условиях повышенной влажности (до 100 ррт об.) и высокого содержания сероводорода в ВСГ (до 10 ррт об.).

Катализаторы ПР-81А и ШПР-81 загружены в реакторы установки Л-35-11/600 в такой последовательности: в реакторы Р-2 и Р-3 с радиальным вводом газосырьевой смеси загружен катализатор ПР-81А в количестве 21 т, а в реакторы Р-4/1 и Р-4/2 с аксиальным вводом газосырьевой смеси — сферический катализатор ШПР-81 в количестве 25 т. Использование катализатора ШПР-81 в аксиальных реакторах позволяет обеспечить эффективный контакт катализатора с сырьем и не требует применения технологии плотной загрузки. Следует отметить, что установка Л-35-11/600 перед загрузкой катализатора семь лет находилась в состоянии консервации, поэтому, несмотря на предварительную ревизию и ремонт оборудования, в начальный период ее эксплуатации возникали проблемы с обеспечением стабильной работы оборудования. Кроме того, в предыдущий период эксплуатации установки использовали сырье с повышенным содержанием серы (до 10 ррт мас.) и алюмоплатиновый катализатор АП-64 (содержание платины 0,6 мас.%), что привело к накоплению значительного количества сульфидной серы на внутренней поверхности оборудования и как следствие к избыточному содержанию сероводорода в ВСГ (5—10 ррт об.) даже при остаточном содержании серы в гидрогенизате на уровне 0,1 ррт мас. По этой причине произошло отравление платинорениевых катализаторов ПР-81А и ШПР-81 и потребовалось проведение их окислительной регенерации и десульфатизации через 2 мес. после пуска, в июле 2012 г. После проведения данных мероприятий и достижения регламентных условий эксплуатации в период август 2012 г.—апрель 2013 г. установка работала в стабильном режиме с получением риформата с ИОЧ 95-97 при давлении в реакторном блоке 2,4 МПа и входных температурах по реакторам 498—502 °C, при этом концентрация водорода в ВСГ в течение цикла составила 75-80 об.%, выход стабильного риформата — 84—86 мас.%, а содержание ароматических углеводородов в риформате — 63— 65 мас.%, в том числе бензола — 4,5-5,0 мас.%. В апреле 2013 г. установка была остановлена на плановый ремонт с проведением окислительной регенерации катализатора, после чего в мае-июле были достигнуты показатели на уровне первого цикла, т.е. катализаторы полностью восстанавливают свои свойства. Следует отметить, что, несмотря на благоприятный углеводородный состав сырья (суммарное содержание нафтенов и ароматических углеводородов составляет 50 мас.%), в нем содержится значительное количество углеводородов С₆ (10— 12 мас.%), которые являются балластом для бензинового варианта риформинга и, более того, обусловливают значительное содержание бензола в риформате (до 5 мас.%). Кроме того, высокое давление по блоку риформинга и необходимость достижения жесткости процесса на уровне 95—97 ИМ приводят к необходимости поддержания высоких входных температур по реакторам — до 500 °C и выше даже при относительно низкой объемной скорости подачи сырья.

Заключение

В ИППУ СО РАН разработаны и внедрены в промышленное производство новые катализаторы риформинга ПР-81 и ШПР-81, которые отличаются от предшественников повышенной механической прочностью и пониженным содержанием примесей.

Применение катализатора ПР-81A на установке ЛП-35-11/40 ООО «Пурнефтепереработка» НК «Роснефть» в период 2010—2013 гг. показало его существенное отличие от платино-рениевых катализаторов типа ПР-71:

- входные температуры по реакторам составляют 460 °C при жесткости процесса с ИОЧ 95—96, что на 25—30 °C ниже, чем для ΠP -71;
- выход стабильного риформата составил 89— 92 мас.%, т.е. на 2—3 % выше;
- содержание ароматических углеводородов в риформате на 5 мас.% ниже;
- содержание легких парафинов C_4 — C_5 в риформате в два раза выше, что обеспечивает повышенное давление его паров (80—100 к Π a).

Использование катализатора ПР-81F и комбинации катализаторов ПР-81A и ШПР-81 на установках в Салавате и Омске обеспечивает достижение плановых показателей.

Полученные результаты позволяют рассчитывать на широкое внедрение новых катализаторов на НПЗ России и стран ближнего зарубежья.

Литература

- 1. *Белый А.С., Смоликов М.Д., Кирьянов Д.И., Удрас И.Е.* // Рос. хим. журн. 2007. Т. LI. № 4. С. 38.
- 2. Белый А.С., Кирьянов Д.И., Удрас И.Е., Затолокина Е.В., Смоликов М.Д., Дуплякин В.К. и др. // Нефтепереработка и нефтехимия. 2004. № 4. С. 34.
- 3. Пармон В.Н., Носков А.С., Дуплякин В.К., Лихолобов В.А. Нефтепереработка и нефтехимия. Технико-экономические аспекты прогрессивных технологий. Санкт-Петербург: Химиздат, 2005. С. 99.
- 4. Белый А.С., Смоликов М.Д., Кирьянов Д.И., Проскура А.Г., Удрас И.Е., Дуплякин В.К., Луговской А.И.,

- *Логинов С.А., Ващенко П.М.* // Катализ в промышленности. 2003. № 6. С. 3.
- Луговской А.И., Логинов С.А., Ващенко П.М., Сысоев В.А., Белый А.С., Дуплякин В.К., Кирьянов Д.И. // Нефтепереработка и нефтехимия. 2000. № 5. С. 27.
- Белый А.С., Смоликов М.Д., Кирьянов Д.И. и др. // Нефтепереработка и нефтехимия. 2001. № 11. С. 54.
- Белый А.С. // Катализ в промышленности. 2003. № 2.
 С. 11.
- 8. *Смоликов М.Д., Кирьянов Д.И., Пашков В.В., Затоло- кина Е.В., Белый А.С.* // Катализ в промышленности. 2009. № 1. С. 42.

УДК 66.094.258.097 + 66.097.3

ВЛИЯНИЕ ПРИРОДЫ ОКИСНОКРЕМНИЕВЫХ СТРУКТУР НА АКТИВНОСТЬ АЛЮМОХРОМОВОГО КАТАЛИЗАТОРА В РЕАКЦИИ ДЕГИДРИРОВАНИЯ ИЗОБУТАНА

© 2013 г. Г.Э. Бекмухамедов, С.Р. Егорова, А.А. Ламберов Казанский (Приволжский) федеральный университет

Введение

Проблема качественной переработки углеводородного сырья, неразрывно связанная с необходимостью снижения энергетических затрат и вредных выбросов в атмосферу на нефтехимических производствах, делает актуальным вопрос создания селективных каталитических систем, сохраняющих свои характеристики в высокотемпературных условиях эксплуатации. Например, на установках дегидрирования C_4 — C_5 -парафинов до соответствующих

олефинов в псевдоожиженном слое эксплуатируется микросферический алюмохромовый катализатор, подвергающийся кратковременному воздействию высоких температур (более 900 °C).

Для улучшения эксплуатационных показателей и термической устойчивости алюмохромовых катализаторов дегидрирования предлагается введение добавок — модификаторов и промоторов, например циркония, олова или фосфора. Так, добавление циркония снижает льюисовскую кислотность катализатора, и вследствие этого возрастает его селективность [1]. Олово в составе алюмохромового катализатора в количестве 1—3 мас.% уменьшает содержание хрома (VI) [2], в результате чего возрастает селективность катализатора в дегидрировании пропана. В работе [3] исследовано влияние фосфора

Бекмухамедов Г.З. – инженер Казанского (Приволжского) федерального университета. Тел./факс: +7 (843) 231-53-46. E-mail: Giyjaz413@yandex.ru

Егорова С.Р. – канд. хим. наук, доцент того же университета. Teл./факс тот же. E-mail: Segorova@rambler.ru

Ламберов А.А. – д-р техн. наук, проф. того же университета. Тел.∕факс тот же. E-mail: Alexander.Lamberov@ksu.ru