541. 128: 66097.3: 66094.3

МОДИФИЦИРОВАНИЕ АЛЮМООКСИДНОГО НОСИТЕЛЯ γ -, χ -Al $_2$ O $_3$ ОКСИДОМ КАЛЬЦИЯ ДЛЯ ПРИГОТОВЛЕНИЯ ПРОМЫШЛЕННЫХ КАТАЛИЗАТОРОВ ОКИСЛЕНИЯ СО И УГЛЕВОДОРОДОВ

© 2012 г. В.Ш. Бахтадзе, В.П. Мосидзе, Д.Г. Картвелишвили, Р.В. Джанджгава, Н.Д. Харабадзе

Институт неорганической химии и электрохимии Тбилисского государственного университета им. Иване Джавахишвили

Введение

В технологии катализаторов широко применяются низкотемпературные модификации оксида алюминия, в частности у-Al₂O₃. Однако в чистом виде без дополнительной технологической обработки они не вполне подходят для приготовления высокотемпературных катализаторов. Проведенные ранее исследования Mn-Pd, Pd, Pt и Co-Mn катализаторов окисления СО [1-3] и конверсии метана водяным паром [4] показали, что физико-химические свойства оксидно-алюминиевых носителей можно улучшить, введя в них небольшое количество модификаторов. Они образуют с оксидом алюминия термостабильные соединения, обладающие более высокими термомеханическими и каталитическими свойствами, чем исходный оксид алюминия. Показано, что при модифицировании оксида алюминия катионами кальция на поверхности возникают координационно-ненасышенные ионы Са⁺⁺, образующие новые электроноакцепторные центры [5]. После термообработки в системе СаО-Al₂O₃ протекают сложные фазовые превращения, кото-

Бахтадзе В.Ш. – канд. техн. наук, руководитель лаборатории катализа Агладзе (0186, Грузия , Тбилиси, ул. Миндели 11). Тел.: (99532) 54-15-56.

Мосидзе В.П. – канд. техн. наук, ст. науч. сотрудник той же лаборатории. Тел. тот же. E-mail тот же

Картвелишвили Д.Г. – канд. техн. наук, ст. науч. сотрудник той же лаборатории. Тел. тот же. E-mail тот же

Джанджгава Р.В. – науч. сотрудник той же лаборатории. Тел. тот же. F-mail тот же

Харабадзе Н.Д. – канд. техн. наук, науч. сотрудник той же лаборатории. Тел. тот же. E-mail тот же

рые приводят к образованию алюминатов кальция $CaO\cdot Al_2O_3$ (CA), $CaO\cdot 2Al_2O_3$ (CA₂) и высокотемпературной фазы æ- Al_2O_3 .

В работе [6] были исследованы образцы, приготовленные следующими 3 способами:

- 1) введение прокаленного оксида кальция в шихту перед формированием гранул;
- 2) добавление раствора нитрата кальция в пасту перед формированием гранул;
- 3) пропитка гранул готового промышленного носителя γ -, χ -Al₂O₃ (марка ШН-2, ТУ-6-02-459—75) раствором нитрата кальция. Массовое содержание оксида кальция в исследуемых образцах составляло 1—3 %.

Было показано, что при прокаливании пропитанных нитратом кальция гранул алюмооксидного носителя при температуре 600—900 °С площадь удельной поверхности носителя незначительно уменьшается. Характерной особенностью данной области (600—900 °С) является интенсивное протекание реакции взаимодействия высокодисперсной фазы оксида кальция (играющей роль аморфной фазы) с кристаллической фазой оксида алюминия (представляющей жесткий скелет). Согласно теории физико-химической механики дисперсных тел [7], такое сочетание фаз является наиболее благоприятным для создания механически прочной структуры.

Некоторые закономерности взаимодействия отдельных модификаций γ , χ -, α -, α -Al₂O₃ с оксидом кальция при различном их соотношении и температуре исследовались в работе [8]. Определены кон-

E-mail: vbakhtkat@yahoo.com

Таблица 1 Фазовый состав образцов Al_2O_3 различных модификаций в смеси с CaO после термообработки при 900 °C в течение 16 ч [8]

Carran of manuar	Содержание окрис	Соотношение фаз	
Состав образцов	CA	CA ₂	(CA/CA ₂)
γ -, χ -Al ₂ O ₃ + 5 mac.% Ca γ -, χ -Al ₂ O ₃ + 15 mac.% Ca	_	основная	_
	основная	основная	1:1
α -Al ₂ O ₃ + 5 mac.% Ca α -Al ₂ O ₃ + 15 mac.% Ca	до 5 мас.%	основная	1:9
	основная	основная	1:1
α -Al ₂ O ₃ +5 mac.% Ca α -Al ₂ O ₃ +15 mac.% Ca	основная	_	-
	основная	_	

центрационные пределы образования алюминатов кальция CA_2 и CA. Показано, что фазы моно- и диалюминатов кальция можно формировать, регулируя содержание оксида кальция в носителе из оксида алюминия, а также в зависимости от модификации последнего (табл. 1). Они отличаются друг от друга строением кристаллической решетки и основными физико-химическими характеристиками.

В задачу данной работы входило исследование характера фазовых превращений низкотемпературных модификаций оксида алюминия в зависимости от количества введенного оксида кальция в системе CaO—Al₂O₃. Проанализированы причины, замедляющие процесс фазовых превращений оксида алюминия. Изучена пористая структура модифицированного, алюмокальциевого носителя (марка ШH-2M) Описаны технологические условия нанесения Pt и Pd на поверхность носителя ШH-2M. Приведены результаты сравнительных испытаний активности Mn—Pd, Pd и Pt катализаторов в реакции окисления СО и глубокого окисления бутана.

Методика эксперимента

Приготовление образцов

Модифицирование промышленного алюмооксидного носителя γ-, χ-Al₂O₃ (марка ШН-2) проводили путем пропитки водным раствором нитрата кальция из расчета содержания в конечном продукте 4–5 мас.% СаО по методике, описанной в [1]. Нанесение палладия на модифицированный носитель ШН-2М (ТУ-6-02-7-124–79) проводили, пропитывая его водным раствором хлористого палладия из расчета содержания 0,1; 0,2 и 0,3 мас.% Рd. После сушки при 80–100 °С (8 ч) и прокаливания в электропечи в воздушной среде при 350–400 °С (2 ч) образцы обрабатывали 4–5 %-ным раствором амми-

ачной воды с повторной сушкой и термообработкой при 300-350 °C. Платиновые катализаторы ПЛК-1 (0,1 мас.% Pt) и ПЛК-2 (0,2 мас.% Pt) готовили путем пропитки носителя ШН-2М водным раствором платинохлористоводородной кислоты. Поверхностного нанесения активных компонентов добивались, поддерживая в растворе определенную концентрацию ионов $C1^-$.

Методы исследования

Рентгенофазовый анализ (РФА) исходного ШН-2 и модифицированного ШН-2М носителей проводили с использованием фокусирующей камерымонохроматора FR-552 на медном K_{α} -излучении по методике, описанной в [9]. В качестве внутреннего стандарта применен кремний (Si) полупроводниковой чистоты. Тщательно перетертые в агатовой ступке образцы наносились на кальку (навеска не более 0,001 г) и снимались сериями по четыре образца одновременно на одну фотопленку. Экспозиция рентгеновского анализа составляла 60±5 мин, что позволяло надежно проследить за количественным и качественным изменением фазового состава образцов в зависимости от температуры обработки и количественного содержания оксида кальция в них. Чувствительность камеры FR-552 до 1 % примесной фазы, а разрешающая способность — 0.01° θ .

Для идентификаций отдельных фаз были использованы данные по оксиду алюминия:

$$pprox$$
-Al $_2$ O $_3$ ASTM 4 -0877 по линии $d=1,40;\ 2,59$ и 2,13 Å; α -Al $_2$ O $_3$ ASTM 10 -173 по линии $d=2,09;\ 2,55$ и 1,60 Å; θ -Al $_2$ O $_3$ ASTM 23 -1009 по линии $d=1,40;\ 2,84$ и 2,74 Å;

по алюминату кальция:

 $CaO\cdot 2Al_2O_3$ ASTM 23—1037 по линии d=3.50: 2.60 и 4.44 Å.

Для определения среднего радиуса и объема пор носителей использовались поромеры низкого и высокого давления MA-3M-1. Распределение отдельных элементов (Al, Ca) по объему гранул носителя ШН-2М изучалось методом рентгеноспектрального микроанализа на электронном микрозонде MS-46 фирмы «Сатеса» (Франция).

Каталитическая активность образцов в реакции окисления СО определялась безградиентным методом на проточно-циркуляционной установке. В реактор загружалась навеска катализатора 1 г (целое зерно диаметром 4 мм). Начальная концентрация СО в смеси с воздухом составляла 1 об.%. Объемная скорость подачи газовой смеси в реактор — 10 л/ч, скорость циркуляции — 500—700 л/ч. Углекислый газ из системы не удалялся. Анализ реакционной смеси на содержание СО до и после реактора проводили на хроматографе ЛХМ-8МД. Активность катализаторов характеризовалась температурой достижения заданных степеней превращения СО (25; 50; 75; 85 %).

В реакции глубокого окисления бутана каталитическая активность определялась безградиентным методом на многоканальной проточно-циркуляционной установке. Продукты реакции — $\mathrm{CO_2}$ и $\mathrm{H_2O}$ — из системы не удалялись. Для опытов брали навеску катализатора 5 г (целое зерно диаметром 4 мм и фракция 1—2 мм). Исходная смесь содержала 0,5 об.% бутана в воздухе. Каталитическую активность определяли при температурах 300; 350 и 400 °C по скорости реакции окисления бутана (см 3 $\mathrm{C_4H_{10}/c\cdot r}$ катализатора).

Обсуждение результатов

В табл. 2 приведен фазовый состав образцов носителей ШН-2 и ШН-2М после прокаливания в воздушной среде при температуре $1000\,^{\circ}$ С в течение 50 ч. Исходный носитель ШН-2 представляет собой γ - и χ -Al₂O₃. В процессе термообработки происходят фазовые превращения с образованием α -, α - и α -фаз оксида алюминия, которые, по визуальной оценке интенсивности, находятся в следующих соотношениях: α -Al₂O₃ α 40–50 %, α -Al₂O₃ α 40–50 % и α -Al₂O₃, которая, по-видимому, не превышает 5–10 %. Кроме линий основных фаз на рентгенограмме носителя ШН-2 обнаружены дополнительные

Таблица 2
Фазовый состав образцов носителей ШН-2 и ШН-2М после термообработки при 1000 °C в течение 50 ч

Образец	Фазовый состав, мас.%
ШН-2	α -Al ₂ O ₃ - 40-50 % æ-Al ₂ O ₃ ~ 40-50 %
	θ-Al ₂ O ₃ не более 5–10 % γ-Al0 (ОН) не более 1–3 %
ШН-2М	CA ₂ ~ 40 % æ-Al ₂ O ₃ ~ 60 %
	присутствие других фаз не обнаружено

линии d = 6,1; 3,16; 2,34; 1,86 Å и достаточно слабые линии d = 1,234 и 1,189 Å (ASTM 21–1307). Основные линии этой фазы накладываются на линии æ-Al₂O₃, что не противоречит предположению о присутствии γ -AlO(OH) в образце ШН-2. Массовое содержание γ -AlO(OH), по визуальной оценке, не превышает 1–3 мас.%. Незначительные количества γ -AlO(OH) могут объясняться наличием в исходном образце небольшого количества влаги. Дальнейшая термическая обработка образца ШН-2 может рассматриваться как гидротермальная, в условиях которой образуется γ -AlO(OH).

Рентгенограммы образцов ШН-2М исходного и прокаленного при 1000 °C в течение 50 ч в отношении фазового состава компонентов полностью идентичны. Следует отметить, что образец, прокаленный при 1000 °C, т.е. при более высокой температуре, чем исходный образец ШН-2М, гораздо лучше окристаллизован, о чем свидетельствуют четкие дифракционные линии рентгенограммы.

Фазовый состав образца ШН-2М отвечает двум соединениям: $CA_2 - 40 \%$ и æ- $Al_2O_3 - 60 \%$. Других примесных фаз не обнаружено.

Результаты исследований фазового состава образцов ШН-2 и ШН-2М позволяют заключить, что оксид кальция в образце ШН-2М полностью взаимодействует с оксидом алюминия, образуя соединение CA_2 , в результате чего фаза α - Al_2O_3 исчезает. Реакция твердофазного взаимодействия оксида кальция с оксидом алюминия носит диффузионный характер. Этот процесс приводит к измельчению и нарушению совершенства кристаллов как α - Al_2O_3 , так и α - Al_2O_3 . В результате этого дифракционные линии α - Al_2O_3 на рентгенограмме образца ШН-2М, подверженного температурной обработке, являются более размытыми и широкими, чем на рентгенограмме ШН-2.

Термообработка модифицированного оксидом кальция носителя ШН-2 при 900 °C в течение 10 ч завершает процесс химического взаимодействия между указанными фазами. Дальнейшая термообработка при 1000 °C не меняет полученной картины, хотя и отражается на поверхностно-структурных свойствах носителя (удельная поверхность и пористая структура).

Чтобы проследить за процессом фазовых превращений при постепенном повышении концентрации CaO в носителе ШН-2, проведен рентгенофазовый анализ следующих систем:

Образец I – ШH-2;

Образец II — ШH-2 + 1 мас.% CaO;

Образец III - ШH-2 + (4–5) мас.% CaO;

Образец IV – ШН-2 +(7-8) мас. « CaO.

Все образцы прокаливали при температурах 880—900, 1000 и 1200 °С в воздушной среде в течение 24 ч. Результаты рентгенофазового анализа процесса приведены в табл. 3.

Отсюда можно заключить, что при температурах прокаливания 880-900 и 1000 °C начальной фазой рекристаллизации является æ- Al_2O_3 . Интенсивность линии рентгенограмм этой фазы увеличивается пропорционально времени и температуре прокаливания образца. При температуре прокаливания 1000 °C æ- Al_2O_3 содержится в хорошо окристаллизованном виде, что выражается в четких и ясных дифракционных линиях на рентгенограмме. Количественное содержание æ- Al_2O_3 в образце ШН-2-1000 °C, по визуальной оценке интенсивности дифракционных линий на рентгенограмме, составляет не менее 80 мас.%. Обнаруживается также присутствие некоторых фаз: α - Al_2O_3 ~ 10 мас.% и

 θ -Al₂O₃ — до 5—10 мас.%. Рентгенограммы образцов ШН-2, прокаленных при 1000 °C в течение 12 и 24 ч, идентичны, а количественное соотношение фаз æ, α - и θ -Al₂O₃ примерно одинаково, хотя отмечается некоторая тенденция к увеличению содержания α -Al₂O₃ за счет уменьшения количества æ-Al₂O₃. Эти данные хорошо согласуются с результатами рентгенофазового анализа носителя ШН-2, приведенного выше (см. табл. 2).

При внесении в образец ШН-2 до 1,0 мас. СаО скорость фазовых превращений у-, х-Al₂O₃ замедляется, и тем резче, чем выше температура термообработки. Рентгенограммы серии образцов, содержащих около 1 % СаО и прокаленных при температурах 880-900 и 1000 °C, свидетельствуют о замедлении процессов кристаллизации æ-Al₂O₃, а также других фаз оксида алюминия. Например, на рентгенограмме образца ШН-2 + 1 мас. % СаО, прокаленного при температуре 1000 °C, наблюдается основная часть слабых диффузных линий æ-Al₂O₃, тогда как линии фаз α - и θ -Al₂O₃ полностью отсутствуют. Если сравнить интенсивность этих линий с рентгенограммой чистого образца ШН-2, прокаленного при 1000 °C, то можно заметить, что количество и интенсивность линий æ-Al₂O₃ на рентгенограмме образца с кальцием меньше, хотя по мере увеличения продолжительности прокаливания при 1000 °C степень окристаллизованности æ-Al₂O₃ увеличивается.

Не останавливаясь на анализе причин, замедляющих процесс фазовых превращений γ -Al₂O₃ при введении до 1 мас.% CaO, следует отметить общую закономерность кристаллизации фаз оксида алюминия — она протекает через стадию образования æ-Al₂O₃. Действительно, фаза æ-Al₂O₃ присутствует

Таблица 3 Фазовый состав образцов носителей ШН-2 + CaO после термообработки в течение 24 ч

Содержание	Фазовый (состав при температура:	х обработки	Пеннования
СаО, мас.%	880-900 °C	1000 °C	1200 °C	Примечание
_	æ-Al $_2$ 0 $_3$	æ-Al ₂ O ₃ ~ 80 % α -Al ₂ O ₃ ~ 10 % θ -Al ₂ O ₃ ~ 5 %	-	Окристаллизованность æ-Al ₂ O ₃ увеличивается с повышением температуры отжига
1	α -Al ₂ 0 ₃	$\text{æ-Al}_2 0_3$	-	Кристаллизация æ-Al ₂ O ₃ недостаточно выражена из-за влияния CaO
4–5	$\text{æ-Al}_2 0_3$	CA ₂ , æ-Al ₂ O ₃ следы	$CA_2 \sim 50 \%$ $\alpha - Al_2O_3, \sim 50 \%$ $\alpha - Al_2O_3 < 1 \%$	С повышением температуры отжига увеличивается кристаллизация $ ext{@e}$ -Al $_2$ O $_3$
7–8	æ-Al_20_3	CA ₂ , æ-Al ₂ O ₃ следы	-	Характер фазовых превращений аналогичен серии с (4–5) мас.% CaO

на всех рентгенограммах изученных нами образцов и достаточно надежно идентифицируется по основным линиям дифрактограмм.

Чтобы определить причины, замедляющие процессы полиморфных фазовых превращений оксида алюминия в системе CaO-Al2O3, нами был проведен рентгенофазовый анализ образцов ШН-2, содержащих 4-5 и 7-8 мас. % СаО и прокаленных при температурах 880-900 и 1000 °C. Увеличение концентрации СаО до 4-5 мас. % еще больше замедляет процесс кристаллизации æ-Al₂O₃. В образце ШH-2+ + (4-5) мас. % CaO, прокаленного при 1000 °C, фаза α -Al₂O₃ почти не наблюдается. Вместо процесса фазовых превращений оксида алюминия при этой температуре образуется новая фаза – СА₂. О ней свидетельствуют яркие и четкие линии рентгенограммы этого образца. При дальнейшем возрастании температуры термообработки образцов этой серии до $1200\,^{\circ}$ С образуются те фазы Al_2O_3 , которые наблюдались в чистом образце ШН-2, отожженном при 1000 °C. Увеличение температуры отжига вызывает кристаллизацию фаз α -Al₂O₃ и α -Al₂O₃ Конечным продуктом этой реакции являются фазы СА2 и α -Al₂O₃ Увеличение концентрации CaO до 7—8 мас.% не изменяет характер фазовых превращений, которые протекают в образцах, содержащих 4-5 мас. % СаО. Все рентгенограммы образцов ШН + (7-8) мас.% СаО аналогичны по виду соответствующим рентгенограммам серии ШH-2 + (4-5) мас.% CaO.

Выводы

1. Фазовые переходы в образцах γ -, χ -Al₂O₃ протекают через стадию образования æ-Al₂O₃ и завершаются кристаллизацией α -Al₂O₃ при температуре

1000 °С в условиях выполненных экспериментов.

- 2. Введение в образцы носителя ШН-2 оксида кальция замедляет процесс фазовых превращений Al_2O_3 , что обусловлено конкурирующим процессом взаимодействия Al_2O_3 с CaO, приводящего к образованию CA_2 . Для образования æ- Al_2O_3 и других модификаций Al_2O_3 в образцах, содержащих CaO, требуются дополнительные энергетические затраты, т.е. повышение температуры и увеличение продолжительности прокаливания. Конечным продуктом фазовых превращений Al_2O_3 , протекающих через стадию образования æ- Al_2O_3 , является α - Al_2O_3 .
- 3. Увеличение концентрации оксида кальция с 4-5 до 7-8 мас.% существенно не изменяет характер фазовых превращений Al_2O_3 .

Рассмотрим далее характер изменения пористости модифицированного носителя в зависимости от количества вводимого оксида кальция при термообработке в течение 24 ч при 1000 °C (табл. 4). Введение оксида кальция во всех случаях приводит к уменьшению объема мелких пор и формированию пор среднего радиуса, причем в результате спекания почти полностью исчезают мелкие поры (до 100 Å). С увеличением количества вводимого оксида кальция при постоянной температуре обработки, равной 1000 °C, наблюдается укрупнение преобладающего радиуса пор и его доли в общей пористости. Радиус средних пор увеличивается от 190-200 до 480-600 Å при содержании оксида кальция 4-5 мас.%. Аналогичная картина наблюдается и для крупных пор – они растут от 3600 до 6000 Å. Увеличение же содержания оксида кальция до 7-8 мас.% снижает объемы средних и крупных пор, причем увеличение

Таблица 4
Параметры пористой структуры образцов носителей ШН-2М + CaO, прокаленных при 1000 °C в течение 24 ч

•	Размерные характеристики пор									Общий
Содержание СаО, мас.%	r, до100 Å			<i>r</i> , от 100 до 1000 Å			r, от 1000 до 10000 Å			объем пор,
Ca0, Mac. 70	r, Å	V, см³∕г	%	r, Å	V, см³∕г	%	r, Å	<i>V</i> , см ³ /г	%	см ³ /г
~ 1,0	30-100	0,016	3,6	190-200	0,070	15,52	3600	0,038	8,42	0,451
~ 2,0	-	-	_	300–480	0,050 0.048	11,79 11,32	3800	0,042	9,90	0,424
4,0-5,0	-	-	-	480–600	0,050 0,050	13,02 13,02	6000	0,042	10,42	0,384
7,0-8,0	_	_	-	900-1000	0,052	14,68	4500	0,028	7,90	0,350
Примечані	Примечание. V – объем пор, r – радиус пор, $\%$ – доля пор радиуса r от общего объема пор.									

Таблица 5 Распределение Ca и Al по объему гранул носителя ШН-2М (α -Al $_2$ O $_3$, CA $_2$) в зависимости от температуры его прокаливания (по данным рентгеноспектрального микронализа)

Температура	Размер пор,	иер пор, Размер фаз, мкм		Пантана
прокаливания ШН-2М, °С	мкм	Al	Ca	Примечание
600	10–15	25–30	60–90	Структура мелкодисперсная. Са распределен по поверхности образца достаточно однородно, а Al неоднородно
800	20–30	40–60	До 30	Структура более крупнопористая. Са распределен практически однородно по всей поверхности образца
900	35–45	_	-	Структура еще более крупнодисперсная. Наблюдается соединение Са с алюминием с образованием алюминатов
1000	30–40	-	-	Алюминий с кальцием распределены наиболее однородно

Таблица 6 Характеристики гранулированных носителей на основе Al₂O₃ [10]

Марка носителя	Фазовый состав	Размер гранул, мм	Насыпная плотность, г/см ³	Общая пористость, см ³ /г	Размер пор, Å	Площадь удельной поверхности, м ² /г	Прочность на раздавливание, кг/см²
ВГ-1000	θ -Al ₂ O ₃	2–3	0,7	0,45-0,50	100-1000	70–95	50
ШН-2	γ -, χ -Al ₂ O ₃	4–5	0,85	0,33-0,40	100-1000	100-120	60–90
ШН-2М	$ ext{a-Al}_2O_3$ $ ext{Ca}O\cdot2Al}_2O_3$	4–5	0,85-0,90	0,35-0,40	100-2000	80–90	120–130

размера средних пор до 900—1000 Å должно происходить за счет уменьшения объема и размера крупных пор. Такой характер изменения пористой структуры связан с введением сравнительно большого количества оксида кальция в носитель и с возрастанием его спекающего влияния.

Результаты рентгеноспектрального микроанализа распределения кальция по объему гранул носителя ШН-2М в зависимости от температуры прокаливания приведены в табл. 5. Эти данные хорошо согласуются с результатами рентгенофазового анализа и с данными изменения пористой структуры изученных образцов в зависимости от температуры термообработки.

В табл. 6 приведены основные физико-химические характеристики носителей ШН-2 и ШН-2М [10]. Как видно, носитель ШН-2М обладает значительно более высокой прочностью и имеет более широкий набор рабочих пор (100–2000 Å).

На основе модифицированного носителя ШН-2М (ТУ-6-02-7-124—79) разработаны марганец-палла-

диевый МПК-1, платиновый ПЛК-1 и ПЛК-2 и палладиевый серии НПК катализаторы окисления СО и углеводородов. Опытно-промышленные партии этих катализаторов прошли лабораторные, стендовые и дорожные испытания в системах очистки отработанных газов как бензиновых, так и дизельных двигателей и внедрены на автотранспортных хозяйствах некоторых предприятий бывшего Советского Союза (Москва, Юрмала, Рустави, Тбилиси) [1–3]. Палладиевый катализатор НПК-3 (серия НПК) в 1984—1985 гг. был внедрен в процессе одностадийного гидрирования фенола до циклогексанона в цехе капролактама Руставского п/о «Азот». В табл. 7 и 8 приведены некоторые физико-химические характеристики Mn-Pd, Pd и Pt катализаторов и данные по активности в реакциях глубокого окисления бутана и окисления СО (Испытания катализаторов проводились в Координационном центре стран-членов СЭВ по промышленным катализаторам, Институт катализа СО АН СССР, Новосибирск).

Таблица 7 Физико-химические характеристики катализаторов на носителе ШН-2М и температуры достижения заданных степеней превращения СО (%)

		Прочность,	Температуры достижения степени превращения CO, °C					
катализатора	г/см ³	м ² /г	см ³ / г		25 %	50 %	75 %	85 %
МПК-1	0,78	98	0,27	114	151	156	159	161
НПК-2	0,86	93	0,32	120	112	113	114	115
ПЛК-1	0,85	116	0,35	125	151	153	154	156
ПЛК-2	0,86	118	0.33	115	136	138	143	152

Примечание. Реакционная смесь: 1 об.% CO + воздух; $g_{\text{кат}}$ – 1 г, диаметр зерен – 4 мм, объемная скорость – $10000\,\text{y}^{-1}$.

Таблица 8 Активность катализаторов на носителе ШН-2М в реакции окисления бутана (реакционная смесь: 0,5 об.% C₄H₁₀ + воздух; g_{кат} – 5 г)

Марка	Фракция	Скорость реакции $ imes 10^2$, см $^3 { m C_4 H_{10}}$ /с.г катализатора				
катализатора	зерен, мм	300 °C	350 °C	400 °C		
ΜΠΚ-1	4	0,068	0,028	1,26		
(0,05%Pd)	1–2	0,083	0,48	2,34		
ПЛК-1	4	0,052	0,11	0,19		
(0,1%Pt)	1–2	0,048	0,14	0,24		
ПЛК-2	4	0,08	0,123	0,23		
(0,2%Pt)	1–2	0,079	0,25	0,37		
НПК-2	4	0,042	0,27	1,59		
(0,2%Pd)	1–2	0,047	0,31	5,88		

Как видно из приведенных в табл. 7 и 8 данных, низкопроцентный (до 0,2 мас.% Pd) палладиевый катализатор НПК-2 по активности превосходит другие образцы, особенно в реакции глубокого окисления бутана. Эти данные хорошо согласуются с результатами проведенных лабораторных и эксплуатационных испытаний опытных образцов катализатора НПК-2 в системах очистки отработанных газов как бензиновых, так и дизельных двигателей [2].

Заключение

Проведенное исследование показало, что значительно улучшить физико-химические и термомеханические свойства носителей из γ -, χ -Al $_2$ O $_3$ можно путем их модифицирования оксидом кальция. Алюмокальциевый носитель с оптимальным содержани-

ем оксида кальция (4—5 мас.%) обладает значительно более высокой прочностью и имеет более широкий набор рабочих пор (100—2000 Å), чем немодифицированный и некоторые известные марки носителей, используемых для приготовления катализаторов.

На основе модифицированного носителя ШН-2М разработан ряд катализаторов — Mn—Pd (МПК-1), Pd (серии НПК) и Pt (ПЛК-1, ПЛК-2) — с низким содержанием (от 0,05 до 0,20 мас.%) драгоценного металла (Pt , Pd), сосредоточенного в основном в приповерхностных слоях гранулы носителя. Опыт промышленной эксплуатации катализаторов на основе ШН-2М показал, что по продолжительности эффективной работы при дожигании отработанных газов двигателей внутреннего сгорания они могут конкурировать с известными промышленными марками катализаторов.

Литература

- 1. *Бахтадзе В.Ш., Харабадзе Н.Д., Мороз Э.М.* // Катализ в промышленности. 2007. № 3. С. 3—9.
- Бахтадзе В.Ш., Мосидзе В. П., Картвелишвили Д.Г., Харабадзе Н.Д., Джанджгава Р.В., Паджишвили М.В., Чочишвили Н.М.// Химический журнал Грузии. 2009. 9 (6). С. 525–528.
- 3. Бахтадзе В.Ш., Мосидзе В. П., Картвелишвили Д.Г., Харабадзе Н.Д.,Кикачеишвили М.Д., Джанджгава Р.В., Чочишвили Н.М. Паджишвили М.В. Химический журнал Грузии. 2010. 10 (3) С. 316—321.
- 4. *Janjgava R., Bakhtadze V., Mosidze V.* Bulletin of the Georgian academy of sciences. 1999. 159. № 1. C. 93–95.
- 5. *Фёнов А.Б., Зайцева И.М., Харланов А.Н., Лунина Е.В.* // Кинетика и катализ. 1997. Т. 38. Вып. 1. С. 155–160.
- 6. Панчишный В., Брызгалова Н., Моисеев В., Андре-

- енко Э., Бахтадзе В. Картвелишвили Д., Кикнадзе Л., Бардавелидзе Д., Дзисяк А., Кирина О., Исаева Е. Симпозиум с участием специалистов стран СЭВ «Снижение токсичности отработавщих газов двигателей внутреннего сгорания». Доклады участников симпозиума. Москва, 1981. С. 151–156.
- 7. *Ребиндер П.А.* Физико-химическая механика новая область науки. Москва: Знание, 1958. С. 64.
- 8. Бахтадзе В.Ш., Джанджгава Р.В., Мосидзе В. П., Кар-
- твелишвили Д.Г., Харабадзе Н.Д. Российская конференция «Научные основы приготовления и технологии катализаторов». Тезисы докладов. Новосибирск, 2004. С. 219—220.
- 9. *Гиньё А*. Рентгенография кристаллов. Теория и практика. М.: Физмат. мет., 1961. С. 604.
- Панчишный В.И. Сб. «Глубокое каталитическое окисление углеводородов». М.: «Наука», 1981. Вып. 18. С. 145—168.

УДК 620.95

ПОТЕНЦИАЛ ПРИМЕНЕНИЯ МИКРОВОДОРОСЛЕЙ В КАЧЕСТВЕ СЫРЬЯ ДЛЯ БИОЭНЕРГЕТИКИ

© 2012 г. К.Н. Сорокина^{1,2}, В.А. Яковлев^{1,3}, А.В. Пилигаев^{1,3}, Р.Г. Кукушкин^{1,3}, С.Е. Пельтек², Н.А. Колчанов^{2,3}, В.Н. Пармон^{1,3}

- 1 Институт катализа СО РАН, Новосибирск
- ² Институт цитологии и генетики СО РАН, Новосибирск
- ³ Новосибирский государственный университет

Введение

Последнее десятилетие характеризуется сокращением доли ископаемого углеводородного сырья в производстве жидких моторных топлив за счет замены на альтернативное сырье растительного происхождения. Причиной является снижение разведан-

Сорокина К.Н. — канд. биол. наук, зав. сектором промышленной микробиологии Института катализа им. Г.К. Борескова СО РАН; Институт цитологии и генетики СО РАН. Тел.: (383) 326-95-86. E-mail: sorokina@catalysis.ru

Пилигаев А.В. – мл. науч. сотрудник Института катализа им. Г.К. Борескова СО РАН. E-mail: piligaev@catalysis.ru

Яковлев В.А. – канд. хим. наук, зав. лабораторией каталитических методов переработки возобновляемого сырья того же института. Ten.: (383) 326-96-50. E-mail: yakovlev@catalysis.ru

Кукушкин Р.Г. – мл. науч. сотрудник того же института. Teл.: (383) 326-96-52. E-mail: roman@catalysis.ru

Пельтек С.Е. – канд. биол. наук, зав. лабораторией молекулярных биотехнологий, зам. директора Института цитологии и генетики СО РАН. Тел.: (383) 363-49-97. E-mail: peltek@bionet.nsc.ru

Колчанов Н.А. — д-р биол. наук, директор того же института. Тел.: (383) 363-49-80. E-mail: kol@bionet.nsc.ru

Пармон В.Н. – д-р хим. наук, директор Института катализа им. Г.К. Бо-рескова СО РАН. Тел.: (383) 330-82-69. E-mail: parmon@catalysis.ru

ных запасов высококачественной «легкой» нефти, сложность освоения новых ее месторождений и истощение старых, что вызывает нестабильность цен на углеводородное сырье при возрастающем спросе на нефть и продукты ее переработки. Проблема дополняется необходимостью снижения выбросов «парникового газа» — CO_2 — в атмосферу. Все это стимулирует внедрение альтернативных «зеленых» технологий и развитие новой отрасли промышленности — биоэнергетики.

Растительную биомассу рассматривают в качестве важнейшего компонента возобновляемых источников энергии, включающих солнечную, ветровую и геотермальную энергии. Существенно, что биомасса растений является потенциальным источником не только энергетического сырья, но и сырья, способного заменить нефть на химических предприятиях [1]. Кроме того, использование растительной биомассы в качестве крупнотоннажного энергетического и химического сырья позволяет не только сохранить баланс в атмосфере между эмиссией и