УДК 544.478.41, 547.565.2

ГИДРОКСИЛИРОВАНИЕ ФЕНОЛА ЗАКИСЬЮ АЗОТА

© 2012 г. **Д.П. Иванов, Л.В.** Пирютко

Институт катализа СО РАН, Новосибирск

Введение

Дигидроксибензолы (гидрохинон (HQ), пирокатехин (CH) и резорцин (RS)) относятся к важнейшим полупродуктам органической химии и используются для синтеза лекарственных веществ, пестицидов и полимеров. Промышленные методы их получения, как правило, многостадийны и нередко требуют применения агрессивных реагентов. Значительные технологические преимущества в синтезе дигидроксибензолов дает процесс окисления фенола перекисью водорода фирмы «Enichem», где в качестве катализатора используется титаносиликат структуры MFI (TS-1); продукты реакции (гидрохинон и пирокатехин) разделяют ректификацией [1]. Процесс обеспечивает удовлетворительные показатели селективности превращения фенола и перекиси водорода в полезные продукты (количество образующихся смол относительно невелико и составляет около 12 % от суммы продуктов окисления фенола) [2]. В то же время недостатками являются наличие растворителя, дезактивация катализатора и необходимость его периодической регенерации, что непросто при жидкофазном процессе. Кроме того, термическая нестабильность пероксида водорода значительно ограничивает выбор реакционных условий.

Перевод реакции в газовую фазу дает ряд технических преимуществ, связанных с непрерывностью проведения процесса и относительной простотой регенерации катализатора. В этой связи значительный интерес представляло бы создание газофазного процесса получения дигидроксибензолов (ДГБ). Перспективным представляется их получение путем реакции фенола с закисью азота:

$$C_6H_5OH + N_2O \rightarrow C_6H_4(OH)_2 + N_2.$$
 (1)

Применение N2O открывает возможности для

Иванов Д.П. – канд. хим. наук, науч. сотрудник. Тел.: (383) 326-95-17. E-mail: divan@catalysis.ru

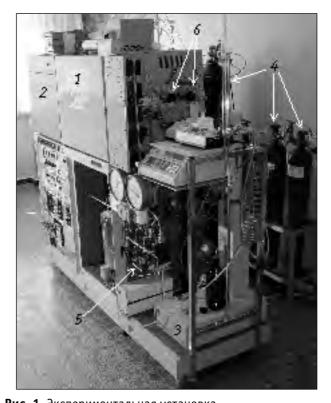
Пирютко Л.В. – канд. хим. наук, ст. науч. сотрудник. Тел.: (383) 326-97-93. E-mail: pirutko@catalysis.ru

газофазного селективного окисления многих ароматических соединений [3—6]. Так, реакция окисления бензола закисью азота легла в основу процесса получения фенола, реализованного в пилотном масштабе (AlPhOx процесс — разработка ИК CO РАН и фирмы «Solutia») [7]. Железосодержащие цеолиты ZSM-5 ведут реакцию с очень высокой селективностью [7—11]. Эффективность этих катализаторов связана с присутствием так называемых α-центров, которые формируются из атомов примесного или специально введенного железа при высокотемпературной активации цеолита [12, 13]. α-Центры представляют собой комплексы Fe²⁺ локализованные в микропористом пространстве цеолита, способные в присутствии N_2O к обратимому редокс-переходу $Fe^{2+} \leftrightarrow Fe^{3+}$. При этом образуется активная форма поверхностного кислорода (α-форма), с участием которой и протекает реакция окисления закисью азота.

В работах [3, 14] была показана принципиальная возможность применения этого подхода и для окисления фенола в ДГБ. Однако, вследствие высокой степени дезактивации катализатора, практическое использование реакции представлялось проблематичным. Кроме того, само исследование ее закономерностей вызывает определенные экспериментальные трудности, связанные с тем, что продукты гидроксилирования фенола являются высококипящими веществами.

Совместное окисление фенола и бензола было изучено в работе [15]. Процесс сопровождался меньшей дезактивацией, чем в случае чистого фенола. Однако ввиду небольшой концентрации фенола в исходной смеси, производительность по ДГБ была невысокой.

В данной работе, с помощью специально сконструированной лабораторной установки с on-line хроматографическим анализом, позволяющей работать с высококипящими соединениями, впервые детально исследованы закономерности реакции газофаз-


ного гидроксилирования фенола закисью азота и получены надежные и воспроизводимые результаты.

Экспериментальная часть

Катализатор. Эксперименты по окислению фенола закисью азота выполнены на катализаторе, содержащем 70 мас.% цеолита ZSM-5 в H-форме, синтезированного согласно патенту [16] (0,9 мас.% Al, 0,01 мас.% Na и 0,03 мас.% Fe) и 30 мас.%. Al₂O₃ в качестве связующего. Перед испытаниями катализатор подвергался термопаровой активации (50 % He, 50 % H₂O) при t = 650 °C. Текстурные характеристики цеолита, определенные по низкотемпературной адсорбции N_2 , являются типичными для структуры MFI: общий объем пор $0,265 \text{ см}^3/\text{г}$; объем микропор $0,160 \text{ см}^3/\Gamma$; общая поверхность ВЕТ 430 M^2/Γ ; внешняя поверхность 68 M^2/Γ . Высокая кристалличность цеолита и отсутствие посторонних фаз подтверждаются методом XRD. Концентрация α-центров, измеренная по методике [17], равна $2,7.10^{17}$ центр/г, что на порядок меньше, чем у типичных катализаторов окисления бензола в фенол [18]. Пониженная концентрация активных центров позволяет вести реакцию при более высоких температурах с целью улучшения десорбции продуктов с поверхности катализатора и уменьшения вероятности более глубокого окисления продуктов реакции.

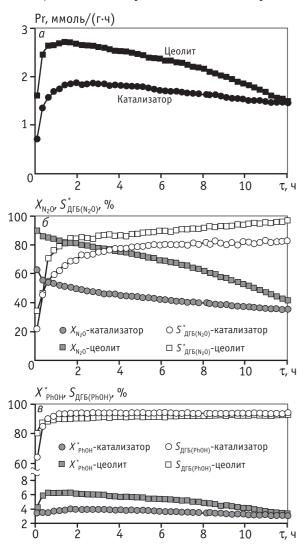
Экспериментальная установка и методика. Опыты проводили в проточной автоматизированной установке (рис. 1), в конструкции которой использованы высокотемпературные варианты шестиходовых кранов с рабочей областью температур 150—330 °C. Аналитический блок установки помещен в термический бокс с температурой 290 °C, что позволяет предотвратить конденсацию высококипящих продуктов реакции и обеспечить их надежный on-line газохроматографический анализ.

Катализатор массой 1 г (фракция 0,5—1 мм) загружался в кварцевый реактор диаметром 7 мм. Реакционная смесь, содержащая фенол, закись азота и гелий в качестве разбавителя, готовилась смешением при температуре 290 °С. Для этого в испаритель подавали фенол (х.ч.) с помощью жидкостного насоса, а медицинскую закись азота и гелий (марки Б)—с помощью flow mass контроллеров. Анализ реакционной смеси проводился автоматически каждые 16 минут на хроматографе, оснащенном детекторами ПИД и ДТП, и непосредственно соединенным с каталитической частью установки. По данным хро-

Рис. 1. Экспериментальная установка 1 – термошкаф; 2 – хроматограф; 3 – жидкостной насос; 4 – газовые баллоны; 5 – flow-mass контроллеры; 6 – высокотемпературные шестиходовые краны

матографического анализа рассчитывали основные характеристики реакции: производительность по ДГБ (Pr), конверсии исходных реагентов (X_{PhOH} и $X_{\text{N}_2\text{O}}$), селективность их превращения в ДГБ, CO_x и побочные продукты, изомерное распределение ДГБ, а также степень дезактивации катализатора.

В ходе реакции на поверхности катализатора образуется кокс. Его количество определялось путем выжигания в термопрограммируемых условиях от 450 до 550 °C смесью, содержащей 10 % воздуха в гелии. Масса кокса определялась по количеству образовавшихся CO_x . Кроме того, в ряде случаев количество кокса дополнительно определялось термогравиметрическим методом, который подтвердил результаты, полученные путем выжигания кокса.


Обсуждение результатов

Каталитические свойства цеолита и формованного катализатора. Прежде чем приступить к детальным исследованиям закономерностей окисления фенола закисью азота, были проведены сравнительные испытания цеолитного порошка и катализатора на его

основе. Опыты проводили в идентичных условиях: $m_{\text{кат}} = 1$ г, t = 475 °C, $\tau_{\text{конт}} = 1,7$ с, отношение N_2O : : PhOH = 3:30 мольн.% в потоке гелия.

Результаты представлены на рис. 2, где показаны зависимости суммарной производительности по ДГБ, конверсии фенола и закиси азота, а также селективности по ДГБ от продолжительности эксперимента.

Из рис. 2, a видно, что максимальная производительность по ДГБ ($Pr_{ДГБ}$) формованного катализатора (1,9 ммоль/г·ч) аддитивно снижается по сравнению с $Pr_{ДГБ}$ цеолита (2,7 ммоль/г·ч), что связано с уменьшением количества активного компонента (цеолита) в катализаторе. В начальный период ве-

Рис. 2. Каталитические свойства цеолита ZSM-5 и катализатора на его основе в реакции окисления фенола закисью азота (t=475 °C, $\tau_{\rm конт}=1.7$ c, $N_20: {\rm PhOH}=3:30$). Параметры, отмеченные звездочкой, рассчитаны без учета количества кокса

личина $Pr_{ДГБ}$ заметно растет и после 2 ч достигает максимального значения. Пониженная исходная активность и ее рост в течение некоторого времени, вероятно, обусловлены как образованием кокса, так и адсорбцией ДГБ на поверхности катализатора. Последующее снижение Pr вызвано дезактивацией катализатора за счет отложения кокса на его поверхности. В случае цеолита наблюдается значительная дезактивация — падение активности за 12 ч достигает 45% от максимальной. В то же время, степень дезактивации формованного катализатора не столь велика и составляет лишь 20%.

Рис. 2, δ демонстрирует изменение характеристик реакции, относящихся к закиси азота. Селективность превращения закиси азота в ДГБ возрастает в ходе реакции: на цеолите от 34 % в начале опыта до 95 % через 12 ч реакции, а на катализаторе, соответственно, от 22 до 82 %. В то же время, конверсия N_2 О испытывает противоположную тенденцию и монотонно снижается в обоих случаях.

На рис. 2, в приведены аналогичные характеристики в отношении фенола. В начале эксперимента селективность превращения фенола в ДГБ возрастает и, достигнув значения 94 %, остается практически постоянной. Значения селективности рассчитаны без учета отложившегося кокса, так как динамика его накопления в ходе эксперимента неизвестна (величина $m_{\text{кокс}}$ измерялась по окончании опыта). Конверсия фенола изменяется незначительно, но проявляется в более сложной форме, проходя через слабо выраженный максимум. В действительности этот максимум является кажущимся. Это обусловлено методом расчета $X_{\rm PhOH}$, основанным на количестве регистрируемых продуктов. В начальный период времени, как уже отмечалось, происходит их повышенное расходование на коксообразование и адсорбцию на катализаторе, что приводит к заниженным значениям X_{PhOH} .

Таким образом, можно заключить, что примененный здесь способ приготовления формованного катализатора позволил эффективно использовать потенциал активности цеолита ZSM-5 в реакции гидроксилирования фенола и получить катализатор, проявляющий высокую селективность в отношении ДГБ, а также, что важно, повышенную стабильность по сравнению с исходным цеолитом.

Влияние условий реакции. Влияние реакционных условий было установлено в ряде экспериментов, в которых варьировались температура, время контакта и количество N_2O в реакционной смеси. В табл. 1

Таблица 1 Данные по селективному окислению фенола закисью азота, усредненные за 12 ч $(t = 475 \, ^{\circ}\text{C}, \, \tau_{\text{конт}} = 1,7 \, \text{c})$

Nº	Состав смеси, мол.%		Производи- тельность,	Конверсия, %		Селективность превращения PhOH, %				Селективность расходования	Кокс,	Дезакти-
	N ₂ 0	Ph0H	Рг _{ДГБ} ммоль/г∙ч	PhOH	N ₂ 0	ДГБ	CO _x	побочн. прод.	Кокс	N ₂ O в ДГБ, %	т _{кокс} , г∕г _{кат}	вация, <i>D</i> , %
1	3	30	1,7	4,2	43	83	4,1	2,0	10,8	76	0,24	20
2*	3	30	0,85	2,3	22	79	3,0	3,5	14,4	83	0,18	~ 5
3**	3	30	1,9	5,1	70	82	5,5	2,5	10,0	60	0,28	35
4	1,5	30	0,85	2,2	48	80	4,2	3,6	11,8	83	0,14	~ 5
5	5	30	2,3	5,9	40	86	3,8	1,7	8,4	74	0,32	45
6***	3	30	1,1	5,0	69	80	3,7	2,3	14,0	65	0,19	10

^{*} Температура реакции 450 °C.

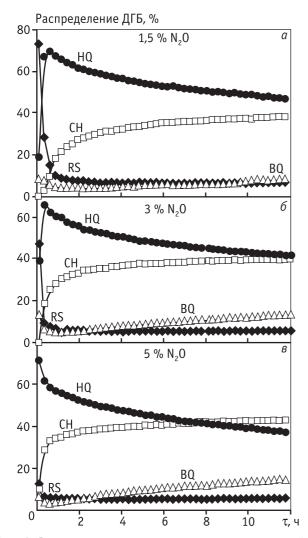
Таблица 2

Изомерный состав смеси ДГБ

в продуктах реакции, усредненный за 12 ч

Nº*	Распределение ДГБ, %						
IN≚	HQ	СН	RS	BQ			
1	48	37	6	9			
2	45	37	7	11			
3	52	36	7	5			
4	53	33	9	5			
5	46	39	6	9			
6	60	30	8	2			
*Номер опыта соответствует номеру опыта в табл. 1.							

и 2 приведены, соответственно, изомерный состав продуктов и усредненные за 12 ч показатели реакции.


Видно, что рост температуры от 450 до 500 °C (опыты 1—3) приводит к увеличению $Pr_{ДГБ}$ от 0,85 до 1,9 ммоль/г·ч. Селективность превращения фенола в ДГБ практически не меняется и составляет 79—83 %. В то же время значительно падает селективность расходования закиси азота в ДГБ (от 83 % при 450 °C до 60 % при 500 °C). При этом наблюдается рост селективности превращения фенола в продукты глубокого окисления (с 3,0 до 5,5 %), что может быть связано с окислением кокса. Действительно, с ростом температуры селективность в кокс уменьшается (с 14,5 до 10 %). Распределение изомеров дигид-

роксибензолов зависит от температуры незначительно — доли резорцина и пирокатехина практически не меняются. Доля гидрохинона увеличивается (с 45 до 52 %) при одновременном уменьшении (с 11 до 5 %) доли пара-бензохинона (BQ). Суммарное же количество BQ и HQ постоянно и составляет 56—57 %. С повышением температуры резко увеличивается степень дезактивации катализатора. Влияние времени контакта исследовалось в опытах 1 и 6 (табл. 1), где оно составляло 1,7 и 3,4 с, соответственно (состав реакционной смеси и температура реакции одинаковы). С увеличением времени контакта возрастают конверсии фенола и закиси азота, но уменьшается производительность по ДГБ (от 1,7 до 1,1 ммоль/г·ч). Одновременно уменьшается селективность расходования закиси азота в ДГБ (с 76 до 65 %). В опытах 1, 4 и 5 (табл. 1) варьировалось содержание N_2O в реакционной смеси — 1,5; 3 и 5 %. С ростом концентрации окислителя возрастает $Pr_{\Pi\Gamma E}$, соответственно с 0,85 до 2,3 ммоль/г·ч. Одновременно существенно увеличивается степень дезактивации катализатора (от 5 до 45 %). Повышение концентрации N2O вызывает значительный рост конверсии фенола (с 2,2 до 5,9 %) и увеличение селективности превращения фенола в ДГБ. В то же время селективность расходования N2O в ДГБ снижается (с 83 до 74 %).

Изомерный состав смеси ДГБ в продуктах реакции. Соотношение количества разных изомеров ДГБ представляет собой важную характеристику не только с точки зрения механизма реакции, но и

^{**} Температура реакции 500 °C.

^{***} Время контакта 3,4 с**.**

Рис. 3. Влияние количества окислителя в реакционной смеси на распределение изомеров ДГБ в продуктах реакции окисления фенола закисью азота ($t=475\,$ °C, $\tau_{\rm конт}=1.7\,$ c)

в практическом плане. Это связано с разной потребностью и разной коммерческой ценностью *орто*-, *мета*- и *пара*-изомеров, среди которых наиболее востребованным является гидрохинон. На рис. 3 представлено изменение изомерного состава в зависимости от количества окислителя в исходной реакционной смеси. Основными продуктами реакции являются гидрохинон и пирокатехин. Их соотношение зависит как от времени реакции, так и от количества окислителя. Например, через 1 ч работы соотношение HQ/CH при концентрации N_2O , равной 1,5 и 5 %, составляет соответственно 3,3 и 1,2. В то же время, как можно видеть из данных табл. 2, усредненные значения при изменении условий реакции почти не меняются. Суммарная доля *пара*-изо-

мера (HQ + BQ) составляет 55—58 %. При реакции доля гидрохинона снижается и увеличивается доля пирокатехина. Если руководствоваться традиционными представлениями о shape селективности, то должна наблюдаться обратная картина. Поскольку в ходе реакции происходит накопление кокса, отложение которого вызывает диффузионные затруднения, то в первую очередь должно уменьшаться количество орто-изомера как более пространственно невыгодного, однако этого не происходит. Можно предполагать, что перераспределение изомеров осуществляется не в каналах, а на внешней поверхности катализатора. Интересной и важной особенностью реакции является образование резорцина. Этот факт трудно объяснить с точки зрения предполагаемого механизма реакции, связанного с электрофильным замещением в бензольном кольце. Известно, что ОН-группа в молекуле фенола активирует орто- и пара-положение, мета-положение, наоборот, дезактивируется. Поэтому факт образования резорцина является необычным явлением, которое может быть объяснено, например, протеканием параллельной реакции с образованием этого продукта. В настоящее время точный механизм образования резорцина доподлинно не установлен, и его изучение является предметом дальнейших исследований.

Сравнение с существующими процессами. Катализатор, использованный в нашей работе, пока не является оптимальным. Предстоит провести оптимизацию химического состава, процедур приготовления и активации катализатора. Тем не менее, представляется целесообразным уже на этом этапе сравнить полученные результаты с показателями существующих процессов синтеза ДГБ. Такую предварительную и очень приблизительную оценку позволяют сделать данные, приведенные в табл. 3, где сопоставлены различные технологии жидкофазного окисления фенола с помощью H_2O_2 (по данным работы [2]) и газофазного окисления закисью азота (данные настоящей работы; опыт 5 из табл. 1).

Видно, что окисление при помощи N_2O обеспечивает конверсию фенола (5,9 %) на уровне процесса Rhone Poulenc (5 %). Селективность превращения фенола в ДГБ (86 %) близка к уровню процессов Rhone-Poulenc и Enichem (90 %). Во всех случаях существенная доля фенола превращается в кокс или смолы. Суммарная селективность превращения фенола (в побочные продукты, кокс и CO_x) для газофазного процесса составляет 14 %, что несколько выше селективности превращения фенола в смо-

Таблица 3 Сравнение способов получения дигидроксибензолов

		Конверсия PhOH					
Окислитель	Процесс			PhOH	N ₂ 0	Соотношение НQ/СН	
			ДГБ	Кокс (смолы)	ДГБ		
H ₂ O ₂ *	Rhone Poulenc (HClO ₄ , H ₃ PO ₄)	5	90	10	70	0,71	
H ₂ O ₂ *	Brichima (Fe ⁺⁺ /Co ⁺⁺)	10	80	20	50	0,43	
H ₂ O ₂ *	Enichem (TS-1)	25	90	12	70	1,0	
N ₂ 0**		5,9	86	14***	74	1,2	

^{*} По данным работы [2].

лы в процессе фирмы «Enichem» (12 %), но меньше, чем для Brichima (20 %). По селективности превращения окислителя в ДГБ (74 %) и соотношению HQ/CH (1,2), газофазный процесс с участием закиси азота имеет некоторое преимущество перед другими технологиями. Таким образом, на данном этапе можно говорить о том, что данный метод получения ДГБ является вполне конкурентоспособным. Его дополнительными плюсами являются термическая стабильность и возможность рециркуляции закиси азота. Кроме того, регенерация катализатора осуществляется в том же реакторе, где происходит реакция, что улучшает эксплуатационные характеристики проведения реакции по сравнению с жидкофазными процессами.

Заключение

Впервые подробно исследовано гидроксилирование фенола закисью азота при температурах 450—500 °С с применением формованного катализатора на основе цеолита ZSM-5. Особенностью катализатора является невысокое содержание активных центров, позволяющее проводить реакцию при повышенных температурах без значительной потери селективностей по дигидроксибензолам.

Изучено влияние реакционных условий на изомерный состав дигидроксибензолов. Найдено, что окисление фенола с помощью N_2 О приводит к образованию всех трех изомеров ДГБ. Образование кокса на поверхности катализатора приводит к перераспределению изомерного состава, которое не коррелирует с диффузией продуктов реакции.

Показано, что гидроксилирование фенола закисью азота на цеолитных катализаторах открывает

новый перспективный путь для разработки газофазного процесса получения гидрохинона и пирокатехина.

Авторы благодарят профессора Г.И. Панова за обсуждение и полезные замечания. Авторы благодарят за финансовую поддержку РФФИ. Грант 11-03-00427-а.

Литература

- Химическая энциклопедия. Москва, 1998. Т. 1. С. 1115.
- 2. Notari B. // Stud. Surf. Sci. Catal. 1988. V. 37. P. 413.
- 3. *Panov G.I., Kharitonov A.S., Sobolev V.I.* // Appl. Catal. A. 1993. V. 98. P. 1.
- 4. *Motz J.L., Heinichen H., Holderich W.F.* // J. Mol. Catal. 1998. V. 136. P. 175.
- 5. Kustov L.M., Tarasov A.L., Bogdan V.I., Tyrlov A.A., Fulmer J.W. // Catal. Today. 2000. V. 61. P. 123.
- 6. Ribera A., Arends I.W.C.E., de Vries S., Perez-Ramires J., Sheldon R.A. // J. Catal. 2000. V. 195. P. 287.
- 7. Uriarte A.K., Rodkin M.A., Gross M.J., Kharitonov A.S., Panov G.I. // Stud. Surf. Sci. Catal. 1997. V. 110. P. 857.
- 8. Panov G.I. // CATTECH. 2000. V. 4. P. 18.
- Jia J., Pillay K.S., Sachtler W.M.H. // J. Catal. 2004. V. 221.
 P. 119.
- Hensen E., Zhu Q., Liu P.-H., Chao K.-J., van Santen R. // J. Catal. 2004. V. 226. P. 466.
- Kubanek P., Wichterlova B., Sobalik Z. // J. Catal. 2002.
 V. 211. P. 109.
- 12. Pirutko L.V., Chernyavsky S.V., Uriarte A.K., Panov G.I. // Appl. Catal. A. 2002. V. 227. P. 143.
- 13. Hensen E.J.M., Zhu Q., Hendrich M.M.R.M., Overweg A.R., Kooyman P.J., Sychev M.V., van Santen R.A. // J. Catal. 2004. V. 221. P. 560.

^{**} По данным опыта № 5 настоящей статьи.

 $^{^{***}}$ CO $_{
m x}$ и побочные продукты включены в расчет кокса.

- Costine A., O'Sillivan T., Hodnett B.K. // Catal. Today. 2005. V. 99. P. 199.
- 15. *Ivanov D.P., Sobolev V.I., Pirutko L.V., Panov G.I.* // Adv. Synth. Catal. 2002. V. 344. P. 996.
- 16. Auger R.J., Landolt G.R. // Us Patent 3,702,886.
- 17. *Дубков К.А., Соболев В.И., Панов Г.И.* // Кинетика и катализ. 1998. Т. 39. № 1. С. 79.
- 18. Иванов Д.П., Родкин М.А., Дубков К.А., Харитонов А.С., Панов Г.И. // Кинетика и катализ. 2000. Т. 41. № 6. С. 850.

УДК 66-942

ПОЛУЧЕНИЕ ЭТИЛЕНА И ПРОПИЛЕНА ИЗ ПРИРОДНОГО ГАЗА ЧЕРЕЗ ПРОМЕЖУТОЧНЫЙ СИНТЕЗ ХЛОРИСТОГО МЕТИЛА И ПОСЛЕДУЮЩИЙ ЕГО КАТАЛИТИЧЕСКИЙ ПИРОЛИЗ

© 2012 г. Ю.А. Трегер, В.Н. Розанов, С.В. Соколова, О.П. Мурашова 000 «Научно-исследовательский инженерный центр "Синтез"», Москва

Введение

Низшие олефины — этилен и пропилен — относятся к наиболее крупнотоннажным сырьевым продуктам в химической и нефтехимической промышленности, потребность в которых стабильно растет, и становится все более актуальной возможность их получения из природного газа (ПГ).

В настоящее время перспективным считается 3-стадийный процесс получения олефинов из природного газа через промежуточный синтез метанола. Цепочка превращения ПГ в этилен через метанол включает следующие каталитические стадии:

1) паровая и/или парокислородная конверсия метана — основного компонента природного газа

$$2CH_4 + H_2O + O_2 \rightarrow CO + CO_2 + 5H_2;$$

Трегер Ю.А. – д-р хим. наук, ген. директор. Тел.: (495) 936-88-41. E-mail: yurytreger@gmail.com

Розанов В.Н. – канд. хим. наук, зав. сектором. Тел.: (495) 434-97-59. E-mail: RozanovVN@yandex.ru

Соколова С.В. – мл. науч. сотрудник. Тел.: (495) 936-89-66. E-mail: epixina@bk.ru

Мурашова О.П. – канд. хим. наук, ст. науч. сотрудник. Тел. тот же. E-mail: epixina@bk.ru

2) синтез метанола

$$CO + CO_2 + 5H_2 \rightarrow 2CH_3OH + H_2O;$$

3) превращение метанола в олефины

$$n$$
CH₃OH \rightarrow C₂H₄ + C₃H₆ + C₄H₈ + + другие углеводороды + n H₂O.

Процесс превращения метанола в олефины с высоким выходом этилена и пропилена на силикоалюмофосфатном катализаторе SAPO-34 является совместной разработкой двух фирм — «UOP» (США) и «Norsk Hydro» (Норвегия) [1]. Выход этилена на пропущенный метанол составляет 48 %, пропилена — 33 %, бутиленов — 10 %. По информации, полученной на презентации фирм «UOP» и «Hydro Polymer» 23.09.2007 г., запуск промышленного производства мощностью по 400 тыс. т полиэтилена и полипропилена в Нигерии, намеченный на 2008 г., был перенесен на 2012 г.

Процесс каталитического пиролиза хлористого метила интересен возможностью его получения из метана при умеренных температурах и давлении в 1 стадию. Синтез легких олефинов из хлористого метила протекает на тех же катализаторах, в тех же