УДК 66.094.18:547.213

АЛЮМОХРОМОВЫЙ КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ ПРОПАНА, ПРИГОТОВЛЕННЫЙ МОДИФИЦИРОВАННЫМ МЕТОДОМ СООСАЖДЕНИЯ

© 2011 г. Л.П. Диденко, А.М. Колесникова, М.С. Воронецкий, В.И. Савченко, И.А. Домашнев, Л.А. Семенцова Институт проблем химической физики РАН, Черноголовка

Введение

Алюмохромовые (АХ) катализаторы используются в промышленных процессах дегидрирования легкого углеводородного сырья с образованием олефинов. В настоящее время легкие олефины получают из нефтяного сырья паровым и каталитическим крекингом нафты. Однако, эти процессы уже не могут обеспечить возрастающий мировой спрос на эти продукты, но есть большие запасы легкого углеводородного сырья, используемые недостаточно и крайне неэффективно.

Реакции дегидрирования легких алканов эндотермичны, поэтому для получения требуемых выходов олефинов необходимы высокие температуры. Например, в промышленных процессах дегидрирования пропана используют температуры 520—700 °С. При этом увеличивается скорость побочных реакций крекинга сырья и коксообразования. Накопление кокса в катализаторе приводит к его дезактивации, в связи с чем возникает необходимость частой окислительной регенерации катализатора. В жестких реакционных условиях предъявляются повышенные требования к эксплуатационным ха-

рактеристикам катализатора. Наряду с высокими показателями активности и селективности, он должен иметь высокие механическую и термическую устойчивости и выдерживать частую окислительную регенерацию.

Несмотря на то, что активность АХ катализаторов в дегидрировании легких алканов была впервые установлена более 70 лет назад, исследования, направленные на усовершенствование катализатора, активно проводятся и в настоящее время. В результате комплексных исследований ОАО «НИИ Ярсинтез» был получен износостойкий и высокоактивный АХ катализатор СПС [1, 2], который используется в Саудовской Аравии на установке дегидрирования изобутана. Его высокая стабильность и устойчивость к механическому разрушению достигнуты в результате перехода от так называемой «коагуляционной» структуры (катализатор ИМ-2201, разработчик НИИМСК) к «кристаллизационной (СПС)». В ИК СО РАН разработан высокоактивный и селективный катализатор на принципиально новом Al₂O₃/Al керамометаллическом носителе кермете [3, 4], который затем был модифицирован продуктом термохимической активации гиббсита, и, таким образом, получена новая модификация АХ катализатора, обладающая более высокой активностью по сравнению с промышленным катализатором ИМ-2201, высокой прочностью на истирание (не менее 94—96 %), высокой термостабильностью и устойчивостью к дезактивации коксом [5, 6].

Значительное число исследований проводится по изучению природы активных форм катализатора, условий их формирования и механизма их дезактивации, что обобщено в работах [7, 8]. Показано влия-

Диденко Л.П. – канд. хим. наук, вед. науч. сотрудник. Тел.: (496) 522-12-81. E-mail: ludi@icp.ac.ru.

Колесникова А.М. – канд. хим. наук, ст. науч. сотрудник. Тел.: (496) 522-53-41. E-mail: k313@icp.ac.ru.

Воронецкий М.С. – аспирант химико-технологического отдела. Тел.: (496) 522-10-65. E-mail: vor@icp.ac.ru.

Савченко В.И. – докт. хим. наук, профессор, зав. химико-технологичес-ким отделом. Тел.: (496) 522-23-17. E-mail: vsavch@icp.ac.ru.

Домашнев И.А. – канд. хим. наук, зав. отделом функциональных материалов и АЦКП. Тел.: (496)522-23-17. E-mail: dia@icp.ac.ru.

Семенцова Л.А. – мл. науч. сотрудник. Тел.: (496) 522-12-81.

ние условий приготовления контактной массы на состав поверхностных форм хрома, прочность их связи с носителем, кислотность поверхности, от которых зависят каталитическая активность и селективность катализатора, устойчивость к образованию кокса и стабильность во времени. Известные и применяемые в настоящее время методы и условия приготовления АХ катализаторов, можно разделить на три основные группы: 1 — пропитка носителя раствором соли хрома и последующее термическое разложение с образованием оксидов хрома; 2 — соосаждение, при котором гидроксиды алюминия и хрома образуются одновременно, затем сушатся и подвергаются высокотемпературной обработке на воздухе (кальцинированию); 3 — эпитаксия атомных слоев, при которой Al₂O₃ насыщают парами ацетилацетоната хрома и затем полученный поверхностный комплекс обрабатывают воздухом при 600 °C для удаления ацетилацетонатных лигандов [9].

В данной работе для приготовления алюмохромового катализатора использован модифицированный метод соосаждения из водных растворов нитратов хрома и алюминия при pH = $9.5 \div 10$ [10], наиболее простой по сравнению с традиционным соосаждением, поскольку из него исключены некоторые стадии. При разработке метода приготовления авторы принимали во внимание, что наиболее активные катализаторы получаются из термодинамически неустойчивых осадков, полученных в далеких от равновесия условиях [11]. Такая ситуация может реализоваться в данном методе, поскольку из процесса приготовления АХ исключили стадии фильтрации, промывания и высушивания осадка, а суспензию гидроксидов хрома и алюминия подвергали высокотемпературной обработке при 550 °C, при этом с высокой скоростью идут процессы выпаривания, высушивания и взаимодействия оксидов хрома и алюминия.

В работе исследованы химический и фазовый состав, текстура катализатора, активность в реакции дегидрирования пропана, обсуждаются сходство и отличия свойств по сравнению с известными АХ катализаторами.

Экспериментальная часть

Приготовление катализатора. Смесь водорастворимых солей хрома и алюминия (хч) нагревали до 80-90 °C и обрабатывали насыщенным раствором аммиака до pH = $9.5 \div 10$. Полученную суспензию

гидроксидов хрома и алюминия помещали в муфельную печь и выдерживали 75 мин при 550 °C. Затем охлаждали до комнатной температуры, растирали и отсеивали фракцию с 0,2—0,4-мм зернами.

Соотношения солей хрома и алюминия в исходных образцах выбирали такими, чтобы получить образцы с содержанием хрома, мас.%: 2,8; 5,5; 9,0; 11,3.

Кальцинировали образцы при 650 и 900 °C в течение часа.

Химический анализ. Определение общего содержания хрома. Навеску образца катализатора помещали в кварцевый тигель и добавляли 10 г пиросульфата калия ($K_2S_2O_7$). Тигель нагревали в муфельной печи до 700 °C и выдерживали 30 мин (до получения плава). Затем охлаждали, растворяли в 20 мл разбавленной H_2SO_4 (1:1) и нагревали до растворения плава, по охлаждении переносили дистиллированной водой в мерную колбу емкостью 100 мл. К аликвотной части полученного раствора приливали 10 мл H₂SO₄ $(\rho = 1.84 \text{ г/см}^3)$, разбавляли дистиллированной водой до 200 мл и нагревали до кипения. Затем приливали 10 мл 0,25 %-ного раствора AgNO₃, разбавляли водой до 300—400 мл, добавляли 3—5 г $(NH_4)_2S_2O_8$ и нагревали для разложения персульфата аммония. После охлаждения раствор титровали 0,0125 н стандартным раствором соли Мора $Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O$. Относительная погрешность анализа не превышала 2,0 %.

Определение содержания Cr^{6+} . Навеску образца массой 0,1-0,3 г растворяли в 10 мл разбавленной серной кислоты (1:1) при нагревании. По охлаждении аликвотную часть полученного раствора титровали 0,0125 н. стандартным раствором соли Мора $Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O$. Относительная погрешность анализа не превышает 3,0%.

Определение содержания Cr^{3+} — по разнице между общим содержанием хрома и содержанием Cr^{6+} .

Рентгенофазовый анализ. РФА проводили на дифрактометре «АДП-2-01» (CuK_{α} -излучение, Ni фильтр), оснащенном программой для автоматизации процессов получения, обработки и анализа данных.

Определение удельной поверхности и распределения пор в образцах вели методом низкотемпера-турной адсорбции азота. Изотермы адсорбции получали с использованием прибора «Autosorb-1» (Quantochrome, USA). Образцы предварительно вакуумировали 1 ч при 280 °C. Погрешность измерений удельной поверхности и объема пор 5—7 %.

Термопрограммированное восстановление (ТПВ) водородом. Этим методом контролировали доли

восстанавливающихся форм хрома в катализаторе в исследуемой температурной области. Измерения выполняли с использованием «Autosorb-1C». Образцы предварительно прогревали 1 ч в потоке Не (30 мл/мин) при 140 °C и затем охлаждали в потоке Не до комнатной температуры. После этого образцы восстанавливали смесью 5,5 об.% $\rm H_2$ + $\rm +94,5$ об.% $\rm N_2$ в режиме программированного подъема температуры со скоростью 10 °C/мин в интервале 50—750 °C; расход газовой смеси 40 см³/мин; масса образца 1,0 г. Профиль поглощения $\rm H_2$ соответствует полному восстановлению $\rm Cr^{6+}$ или $\rm Cr^{5+}$ до $\rm Cr^{3+}$.

ЭПР-исследование. Метод электронного парамагнитного резонанса использовали для контроля содержания Cr^{5+} и Cr^{3+} в образцах. Спектры ЭПР исследуемых образцов катализатора, помещенных в тонкостенную стеклянную ампулу, получали на спектрометре «SE/X-2544» (Radiopan, Польша) при комнатной температуре.

Концентрацию Cr^{5+} оценивали по сравнению вторых интегралов спектров исследуемых образцов и стандарта — $CuSO_4 \cdot 5H_2O$. Относительная погрешность измерений 15 %.

Термогравиметрический/дифференциально термический анализ. По результатам ТГ/ДТА определяли количество углеводородных отложений в катализаторе после реакции и температурную область их выгорания на воздухе. Измерения проводили на дериватографе «Q-1500Д». Катализатор (50 мг) загружали в стандартные корундовые открытые тигли. Нагрев проводили на воздухе при линейном подъеме температуры со скоростью 5 °С/мин. Образец предварительно вакуумировали 1 ч при 300 °С.

Определение каталитической активности образцов. Для характеристики каталитической активности образцов в дегидрировании пропана определяли степень конверсии пропана и селективность образования пропилена при 550 °C. Исследуемый процесс включает реакции:

основную

$$C_3H_8 \leftrightarrow C_3H_6 + H_2,$$
 (1)

и побочные

$$C_3H_8 \to CH_4 + C_2H_4,$$
 (2)

$$C_2H_4 + H_2 \leftrightarrow C_2H_6, \tag{3}$$

$$C_3H_8, C_3H_6, C_2H_6, C_2H_4, CH_4 \rightarrow$$
 \rightarrow УВ отложения + H_2 . (4)

Дегидрирование проводили в кварцевом реакторе (внутренний диаметр — 10 мм) проточного типа с неподвижным слоем катализатора. Пропан (марка 3,5, содержание примесей 0,05 об.%) поступал из баллона с заданной скоростью, устанавливаемой регулятором расхода газа «РРГ-12». Реактор, обогреваемый электрической печью, имел две зоны: предварительного подогрева сырья до 400 °С и реакционную, куда помещали 0,61 г катализатора. Температуру реакции поддерживали регулятором измерителя «ПТ-200» (абсолютная погрешность прибора ±6 °C) и контролировали помещенной в слой катализатора хромель-алюмелевой термопарой, соединенной с цифровым датчиком. Предварительная подготовка катализатора включала вакуумирование при 550 °C в течение часа для удаления воды и других летучих примесей.

Выходящую из реактора газовую смесь анализировали в режиме online с использованием хроматографа «Кристалл-5000» (ЗАО «Хроматек», Россия), имеющего детекторы пламенно-ионизационный и по теплопроводности. Содержание H_2 в продуктах реакции определяли на колонке с молекулярными ситами «13Х» (2 мм×2 м, $t=50\,^{\circ}$ С, газ-носитель — аргон). Углеводородный состав продуктов (CH_4 , C_2H_4 , C_2H_6 , C_3H_6 , C_3H_8) определяли на колонке HP — AI/KCI (0,5 мм×30 м, 80 °С, газ-носитель — гелий) с точностью не менее 99 %.

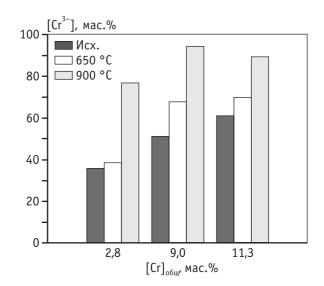
Конверсию пропана (α , %) и селективность образования продуктов (S, %) рассчитывали по уравнениям:

$$\alpha = \frac{X_{C_3H_8}^{BX} v_{BX} - X_{C_3H_8}^{BbIX} v_{BbIX}}{X_{C_3H_8}^{BX} v_{BX}} \cdot 100,$$
 (5)

$$S = \frac{nX_{\text{прод}}v_{\text{вых}}}{3(X_{\text{C}_{3}\text{H}_{8}}^{\text{BX}}v_{\text{BX}} - X_{\text{C}_{3}\text{H}_{8}}^{\text{BiX}}v_{\text{вых}})} \cdot 100,$$
 (6)

где $v_{\rm BX}$ — объемная скорость пропана, см³/мин, на входе в реактор; $X_{\rm C_3H_8}^{\rm BX}$ и $X_{\rm C_3H_8}^{\rm Bblx}$ — объемные концентрации пропана, %, в газовом потоке на входе в реактор и в продуктах реакции на выходе из реактора; $v_{\rm Bblx}$ — объемная скорость, см³/мин, продуктов реакции на выходе из реактора; $X_{\rm прод}$ — объемная концентрация продукта, %, в выходящей из реактора смеси; n — количество атомов углерода в продукте.

Селективность образования углеводородных отложений, %:


$$S_c = 100 - \sum S_{(CH_4 + C_2H_4 + C_3H_6 + C_3H_6)}.$$
 (7)

Результаты и их обсуждение

Согласно литературным данным, в АХ катализаторах, полученных разными методами, хром присутствует в формах Cr^{3+} , Cr^{6+} и Cr^{5+} , причем содержание Cr5+ незначительно — как правило, составляет несколько процентов от общего содержания хрома [12, 13]. При общем содержании до 15-20 мас.% хром находится преимущественно на поверхности носителя в виде моно- и (или) полиядерных структур [11]. Основными факторами, влияющими на соотношение и структуру хрома, являются содержание хрома в катализаторе и $t_{\text{калыц}}$ [7, 8]. Чтобы установить влияние этих факторов на состав и свойства данного катализатора, изучалось изменение свойств образцов, содержащих 2,8, 5,5, 9,0 и 11,3 мас.% Ст, после кальцинирования при 650 и 900 °C.

Результаты химического анализа показали, что основными формами хрома во всех вышеуказанных образцах являются Cr^{3+} и Cr^{6+} , что сходно с описанными в литературе АХ катализаторами [7, 8]. Изменение их соотношения при варьировании общего содержания хрома в катализаторе и температуры кальцинирования представлено на рис. 1, согласно которому при общем содержании 2,8 мас.% Сг около 36 % приходится на Cr^{3+} , а при 9—11 мас.% Ст содержание Ст³⁺ возрастает до 60—70 %. В катализаторах, описанных в литературе, образование Cr³⁺ наблюдается только при монослойном покрытии носителя, составляющем 4 ат. Cr/нм² [7], что в исследуемом катализаторе наблюдается в образцах с исходным содержанием Ст 9—10 мас. %. Источником Сг³⁺ являются полихроматы, содержание которых увеличивается с общим содержанием хрома. Они термически нестабильны и легко переходят в поверхностные Cr³⁺ в процессе кальцинирования [7]. Можно предположить, что особенности синтеза данного катализатора, в первую очередь, высокая температура (550 °C), способствуют образованию Cr³⁺ уже при низком общем содержании хрома. После кальцинирования образцов содержание Cr^{3+} возрастает, при $t_{\text{кальи}} = 900$ °C и общем содержании хрома 9,0-11,3 мас.% оно достигает 90 % (см. рис. 1).

Исследование методом ЭПР позволят установить в какой форме находятся поверхностные ионы ${\rm Cr}^{3+}$ — в виде изолированных форм или в виде кластеров, аморфных или кристаллических. Отметим, что кристаллическая форма α - ${\rm Cr}_2{\rm O}_3$ малоактивна в де-

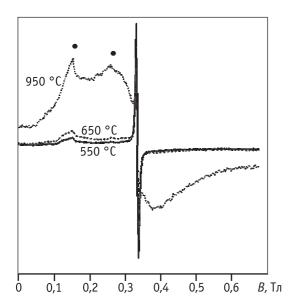


Рис. 1. Зависимость содержания Cr^{3+} от общего содержания хрома в катализаторе и температуры кальцинирования

гидрировании легких алканов. В описанных АX катализаторах ее содержание увеличивается после кальцинирования, что приводит к снижению каталитической активности [7, 8].

В спектрах ЭПР изолированным поверхностным ионам Cr^{3+} соответствует δ -сигнал с двумя максимумами, один из которых локализуется в области $g=4,0\div5,5$, а второй при g=2,6 [8, 14, 15]. Аморфным кластерам малых размеров соответствует широкий β -сигнал с расстоянием (Δ) между максимумами первой производной в пределах 80-180 мТл и g=1,98. С увеличением размера кластеров β -сигнал становится более узким, постепенно приближаясь к значениям, характерным для кристаллической формы α - Cr_2O_3 ($\Delta=50$ мТл и g=1,98) [8, 16]. Кроме Cr^{3+} в ЭПР-спектре проявляются изолированные ионы Cr^{5+} в виде γ -сигнала, который центрируется вблизи g=1,97 с $\Delta=5,0\div6,0$ мТл.

Спектры ЭПР образцов исследуемого катализатора с общим исходным содержанием хрома 5,5 мас.% и после кальцинирования при 650 и 900 °С представлены на рис. 2, где интенсивный γ -сигнал указывает на присутствие изолированных ионов Cr^{5+} . Их содержание в исходном образце составляет 3—5 мас.%. С увеличением $t_{\text{кальц}}$ интенсивность этого сигнала снижается, что указывает на уменьшение содержания Cr^{5+} . Кроме γ -сигнала, в спектре присутствует δ -сигнал, соответствующий изолированным ионам Cr^{3+} . Увеличивающаяся с $t_{\text{кальц}}$ интенсивность сигнала свидетельствует о возрастании их содержания. При $t_{\text{кальц}}$ = 900 °С появляется также

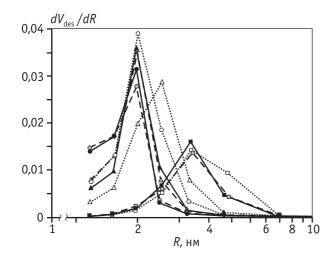
Рис. 2. Спектры ЭПР катализатора, содержащего 5,5 мас.% Сг, кальцинированного при разных температурах

пики, относящиеся к δ-сигналу

 β -сигнал, указывающий на образование аморфных кластеров Cr^{3+} малых размеров.

Аналогично методом ЭПР были исследованы образцы с общим содержанием хрома 2,8, 9,0 и 11,3 мас.%. Оно показало, что при низком исходном (2,8 мас.%) содержании хрома единственной поверхностной формой в катализаторах являются изолированные ионы Cr³⁺. Образования аморфных кластеров не происходит до $t_{\text{кальи}} = 900$ °C. В образцах с содержанием хрома 9,0—11,3 мас. % аморфные кластеры присутствуют уже в исходных образцах, и их содержание возрастает с $t_{\text{кальи}}$. Особенностью катализатора является отсутствие ЭПР-сигнала, характерного для малоактивной в дегидрировании кристаллической формы $\alpha\text{-Cr}_2O_3$, во всей исследуемой области $t_{\text{кальц}}$. Это подтверждают и результаты РФА, которые показали, что вплоть до $t_{\text{кальи}} = 900 \, ^{\circ}\text{C}$ хром находится в аморфном состоянии — дифракционные линии при $2\theta = 24.8, 32.8$ и 54,6 град., характерные для кристаллов α -Cr₂O₃, не обнаружены.

Препятствовать укрупнению аморфных поверхностных кластеров хрома и их переходу в кристаллическую форму при кальцинировании может прочная связь хрома с носителем. Это подтверждают данные ТПВ катализатора. На кривых ТПВ водородом образцов с разным содержанием хрома имеется единственный пик, соответствующий восстановлению Cr^{6+} в Cr^{3+} , что согласуется с вышеприве-


денными данными химического анализа и ЭПР исследования, показывающими, что формами хрома в катализаторе являются Cr^{3+} и Cr^{6+} . Максимум на кривой ТПВ, независимо от общего содержания хрома, находится в области 382-384 °C. После кальцинирования при 650 °C положение максимума не изменяется, а после кальцинирования при 900 °C наблюдается лишь небольшой сдвиг до 355-361 °C. Небольшое снижение температуры максимума (на 23-27 °C) свидетельствует о незначительном ослаблении связи поверхностных форм хрома с носителем после кальцинирования при 900 °C. В целом, эти данные показывают, что в широкой области содержания хрома и $t_{\text{кальц}}$ поверхностные формы хрома прочно связаны с носителем.

Термическая устойчивость катализаторов в значительной степени зависит от стабильности структуры носителя при высоких температурах. У многих АХ катализаторов в процессе кальцинирования при 800-900 °C наблюдается фазовый переход γ -Al₂O₃ \rightarrow $ightarrow \theta$ -Al₂O₃ $ightarrow \alpha$ -Al₂O₃ [16]. Переход от низкотемпературных форм с кубической структурой и разными формами искажения к высокотемпературной форме с гексагональной структурой приводит к ослаблению связи поверхностных форм хрома с носителем, сопровождающемся их спеканием и дезактивацией катализатора. В данном катализаторе указанного фазового перехода не происходит. Согласно результатам РФА у образцов с $t_{\text{кальц}} \le 900$ °C сохраняются дифракционные линии при $2\theta = 46,1$ и 67,8 град. и широкая линия между $2\theta = 36$ и 38 град., что соответствует структуре γ-Al₂O₃ (или другим низкотемпературным формам Al_2O_3).

Поверхность и пористая структура исследуемого катализатора претерпевают изменения в процессе кальцинирования. Из табл. 1 видно, что у исходных образцов с разным общим содержанием хрома удельная поверхность (S_{VII}), более, чем на 100 м²/г превосходит $S_{v\pi}$ других AX катализаторов, описанных, например, в [8, 17]. Это может быть обусловлено особенностями синтеза, в процессе которого происходит значительное газовыделение. После кальцинирования $S_{yд}$ снижается (при $t_{\text{кальц}} = 900$ °C более, чем вдвое). Из представленного на рис. 3 распределения пор по радиусам видно, что после кальцинирования при 900 °C радиус пор, соответствующий максимумам объема пор, увеличивается от 2,0 нм в исходных образцах до 3,0 нм, а уровень участков с радиусом пор менее 1,5 нм, снижается. Поскольку общий объем пор практически не изменяется, увеличение радиу-

Таблица 1
Удельная поверхность и объем пор образцов с различным содержанием хрома после кальцинирования при разной температуре

Ст, мас.%	t _{кальц} , °C	S _{уд} , м²/г	$V_{\text{пор}}$, см 3 /г	
	Б.к.*	275	0,35	
2,8	650	239	0,34	
	900	149	0,34	
5,5	Б.к.	255	0,34	
	Б.к.	296	0,26	
9,0	650	233	0,26	
	900	126	0,25	
	Б.к.	270	0,26	
11,3	650	225	0,26	
	900	125	0,27	
* Без кальцинир	ования.			

Рис. 3. Влияние температуры кальцинирования и содержания Cr в катализаторе на распределение пор по радиусам

		•					•		,
Ст, мас.%		11,3			9,0			2,8	
$t_{ m кальц}$ °С	Б.к.*	650	900	Б.к.*	650	900	Б.к.*	650	900
Обозна- чения	•	A	•	•	Δ		0	Δ	
*Без каль	динир	овани	я.						

са пор может происходить за счет их перераспределения по размерам после кальцинирования.

При более низкой $t_{\text{кальц}} = 650$ °C увеличение радиуса пор происходит только в образцах с малым (2,8 мас.%) содержанием хрома (см. рис. 3). При более высоком содержании хрома (9,0 и 11,3 мас.% Сг)

мезопористая структура не изменяется при кальцинировании. В этом случае единственная причина снижения $S_{\rm уд}$ —уменьшение содержания малых пор (рис. 3).

Относительно природы активных центров АХ катализатора в дегидрировании легких алканов нет единой точки зрения. Данные исследований [18, 19] указывают на преимущественную каталитическую активность изолированных поверхностных ионов ${\rm Cr}^{3+}$, образующихся в первые минуты реакции при восстановлении ${\rm Cr}^{6+/5+}$ алканом. В других работах показано, что каталитически активной формой являются ионы ${\rm Cr}^{3+}$, стабилизирующиеся на поверхности в процессе синтеза катализатора. Причем, согласно [8, 14], наиболее активными формами ${\rm Cr}^{3+}$ являются аморфные кластеры малых размеров, а данные [12, 13] указывают на преимущественную активность изолированных ионов.

Для установления природы активной формы хрома в исследуемом катализаторе проведено сопоставление поверхностного содержания Cr³⁺ и Cr⁶⁺ в катализаторе с конверсией пропана (табл. 2). На начальном этапе реакции наблюдается высокая конверсия пропана в кокс, которая снижается со временем и достигает постоянной величины к 10-й— 20-й минутам, в зависимости от расхода пропана. Аналогичные изменения наблюдали в работах [15, 18], объясняя высокой активностью сильных кислотных центров поверхности носителя в реакции коксообразования. После их дезактивации коксом скорость этого процесса заметно снижается, достигая стационарного значения. Поэтому в табл. 2 величины конверсии пропана и селективностей образования пропилена и кокса представлены для 40-й минуты реакции. В течение 2 ч эти показатели практически не изменялись.

Из табл. 2 видно, что, как с увеличением общего содержания хрома, так и с температурой кальцинирования, в образцах возрастает содержание поверхностных форм ${\rm Cr}^{3+}$. Вместе с тем, представленные данные ЭПР измерений показывают, что в составе ${\rm Cr}^{3+}$ форм снижается содержание изолированных ионов. Только в образцах, содержащих 2,8 мас.% ${\rm Cr}$, при всех $t_{\rm кальц}$ хром находится в виде одной поверхностной формы — изолированных ионов ${\rm Cr}^{3+}$. Сопоставление изменений ее содержания при разных $t_{\rm кальц}$ и конверсии пропана показывает, что характер их изменения сходен. Поэтому можно предположить, что преимущественной каталитической активностью обладают изолированные поверхност-

Таблица 2
Зависимость содержания Cr³⁺ и Cr⁶⁺ и основных показателей реакции дегидрирования пропана от общего содержания хрома и температуры кальцинирования при 550 °C, расходе пропана 13,6 см³/мин, загрузке 0,61 г, фракции зерен 0,2–0,4 мм

Общее содержание Cr, мас.%	t _{кальц} , °С	Содержание ^{*1} , 10 ⁻⁴ г/м ² ·		*2 0	Селективность, %		
		Cr ³⁺	Cr ⁶⁺	Конверсия ^{*2} С ₃ Н ₈	C_3H_6	УВ отложение	
2,8	Б.к.	0,36	0,64	9,1	89,4	3,3	
	650	0,46	0,74	13,7	90,0	3,1	
	900	1,45	0,45	21,7	93,2	1,6	
5,5	Б.к.	0,76	1.34	20,5	88,9	2,5	
9,0	Б.к.	1.5	1,5	18,5	91,1	2,2	
	650	2,6	1,2	21,7	86,2	1,8	
	900	6,7	0,4	23,7	89,7	2,2	
11,3	Б.к.	2,6	1,6	20,8	91,2	0,2	
	650	3,5	1,5	27,4	85,1	2,1	
	900	8,0	1,0	24,3	94,6	0,3	

[🕺] Рассчитано по данным табл. 1 и рис. 1.

ные ионы Cr^{3+} . Дополнительное подтверждение дает сравнение конверсии пропана и поверхностного содержания хрома в исходных образцах. Можно видеть, что в исходных образцах с общим содержанием хрома 2,8 и 5,5 мас.% изменения конверсии пропана и содержания поверхностных ионов Cr^{3+} сходны (см. табл. 2). Согласно ЭПР-данным, Cr^{3+} в этих образцах находится в виде изолированных поверхностных ионов. При увеличении содержания хрома до 9,0 и 11,3 мас.% содержание Cr^{3+} форм возрастает, но в их составе увеличивается доля кластеров малых размеров, и конверсия практически не изменяется (см. табл. 2).

Высказанное предположение о преимущественной каталитической активности изолированных поверхностных ионов Cr³⁺ следует рассматривать как предварительное и требует экспериментальных подтверждений.

В табл. 2 также приведены показатели селективностей образования пропилена и углеводородных отложений. Можно видеть, что, независимо от общего содержания хрома в катализаторе реакция идет с высокой селективностью образования пропилена (85—95 %) и низким коксообразованием (максимальная селективность образования кокса 3,3 %). Изучение пористой структуры катализатора после 2 ч реакции показало, что накопление кокса не из-

меняет распределения мезопор и приводит лишь к снижению уровня участков на кривых распределения пор, соответствующих малым порам с радиусом менее 1,5 нм, и небольшому ($\approx 10~\%$) снижению удельной поверхности. Эти данные указывают на преимущественное накопление кокса на поверхности малых пор. Согласно ТГА, максимум экзоэффекта на кривых ДТГ находится в области $400~^{\circ}$ С, т.е. кокс образуется в форме легковыгораемых углеводородных отложений.

Заключение

Результаты исследования показали, что катализатор, приготовленный модифицированным методом соосаждения, имеет ряд особенностей. Прежде всего, это высокая термическая устойчивость. Она обусловлена, с одной стороны, прочными связями поверхностных форм хрома с носителем, что препятствует образованию малоактивной формы α -Cr₂O₃ в процессе кальцинирования, а с другой — структура носителя устойчива к фазовым переходам до $t_{\text{кальц}} = 900$ °C, что обеспечивает сохранение высокой каталитической активности после кальцинирования. По основным показателям (конверсия, селективность образования пропилена, устойчивость к коксообразованию) в реакции дегидрирования

^{*2} На 40-й минуте.

пропана данный АХ катализатор не уступает представленным в литературе наиболее активным образцам. Его особенность — высокая каталитическая активность при низком общем содержании хрома $(2,8-5,5\,\text{мас.}\%)$ — обусловлена высоким содержанием изолированных поверхностных ионов Cr^{3+} , определяющих, по нашему предположению, основную каталитическую активность.

Авторы благодарят сотрудников Института проблем химической физики РАН Е.И. Кнерельман, Г.И. Давыдову, Ю.М. Шульгу и А.В. Куликова за помощь в исследовании катализатора методами низкотемпературной адсорбции азота и ЭПР.

Литература

- 1. Пат. 1366200 (РФ). Способ дегидрирования парафиновых углеводородов C_3-C_5 / Г.Р. Котельников, Р.К. Михайлов, Р. Йецци и др.
- 2. *Котельников Г.Р., Беспалов В.П.* // Катализ в промышленности. 2007. № 2. С. 59.
- 3. *Тихов С.Ф., Фенелонов В.Б., Садыков В.А.* и др. // Кинетика и катализ. 2000. Т. 41. № 6. С. 907.
- 4. Тихов С.Ф., Романенко В.Е., Садыков В.А. и др. Пористые композиты на основе оксид-алюминиевых керметов (синтез и свойства). Новосибирск: Изд-во СО РАН. 2004.
- Пахомов Н.А., Тихов С.Ф., Беспалко Ю.Н. и др. // Мембраны. Серия Критические технологии. 2006.
 № 1. С. 29.

- 6. *Молчанов В.В., Исупова Л.А., Пахомов Н.А., Каш-кин В.Н.* // Каталитический бюллетень. 2009. № 1(49).
- Weckhuysen B.M., Schoonheydt R.A. // Catal. Today. 1999.
 Vol. 51. P. 223.
- 8. *Puurunen R.L., Weckhuysen B.M.* // J. Catal. 2002. Vol. 210. P. 418.
- Kytokovi A., Jacobs J.P., Hakuli A. et al. // J. Catal. 1996.
 Vol. 162. P. 190.
- 10. Пат. 2318593 (РФ). Способ получения катализатора для дегидрирования углеводородов и катализатор, полученный этим способом / С.М. Алдошин, И.Л. Балихин, В.И. Берестенко и др. 2008.
- 11. *Крылов О.В.* Гетерогенный катализ. М.: ИКЦ «Академ-книга», 2004.
- 12. *De Rossi S., Ferraris G., Fremiotti S.* et al. // J. Catal. 1994. Vol. 148. P. 36.
- 13. *De Rossi S., Pia Casaletto M., Ferraris G.* et al. // Appl. Catal. A. 1998. Vol. 167. P. 257.
- 14. *Brucker A., Radnik J., Hoang D.-L.* et al. // Catal. Lett. 1999. Vol. 60. P. 183.
- Weckhuysen B.M., Wachs I.E., Schoonheydt R.A. // Chem. Rev. 1996. Vol. 96. P. 3327.
- Morterra C., Magnacca G. // Catal. Today 1996. Vol. 27. P. 497.
- 17. Shivaji Thapliyal, Goutam Deo // Bull. Catal.Soc. India. 2003. Vol. 2. P. 29.
- 18. *Hakuli A., Kytokivi A., Krause A.O.* et al. // J. Catal. 1996. Vol. 161. P. 393.
- 19. Weckhuysen B.M., Bensalem A., Schoonheydt R.A. // J. Chem. Soc., Faraday Trans. 1998. Vol. 94. P. 2011.

XIX МЕНДЕЛЕЕВСКИЙ СЪЕЗД ПО ОБЩЕЙ И ПРИКЛАДНОЙ ХИМИИ

В рамках Международного года химии, объявленного Генеральной Ассамблеей ООН

25–30 сентября 2011 г. Волгоград, Россия www.mendeleev2011.vstu.ru

