тализаторов, необходимо дооборудование технологической схемы линией выжига кокса и оксихлорирования с заменой компрессорного оборудования. При этом предложен вариант модернизации установки дегидрирования с добавлением оборудования для регенерации катализаторов дегидрирования.

Литература

- Ивашкина Е.Н., Францина Е.В., Романовский Р.В., Долганов И.М., Иванчина Э.Д., Кравцов А.В. Разработка методики увеличения ресурса работы катализатора дегидрирования высших парафинов на основе нестационарной кинетической модели реактора // Катализ в промышленности. 2012. № 1. С. 40-50.
- Луговской А.И., Шапиро Р.Н., Ващенко П.М., Рабинович Г.Б. Совершенствование окислительной регенерации полиметаллических катализаторов на установках риформинга // Нефтепереработка и нефтехимия. 1984. № 5. С. 6.
- 3. Способ регенерации катализаторов риформинга на оксиде алюминия или на сульфированном окси-

де алюминия [Текст]: пат. 2157728 Рос. Федерация: B01J23/96, C10G35/085 / Шапиро Р.Н., Жарков Б.Б., заявка 99120837/04 от 07.10.1999, дата публикации — 20.10.2000, заявители Шапиро Р.Н., Жарков Б.Б. (RU).

- Мелехин В.В., Молотов К.В., Кравцов А.В., Иванчина Э.Д., Чеканцев Н.В., Занин И.К. Повышение эффективности стадии оксихлорирования Pt-Re-катализаторов риформинга методом математического моделирования // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2009. № 12. С. 10—14.
- Regeneration and stabilization of dehydrogenation catalyst [Текст]: пат. 5695724 США: B01J802 / Shiou-Shan Chen и др., дата публикации 5.12.1997.
- Tamilnadu Petroproducts Limited [Электронный ресурс]. — Режим доступа: — http://www.tnpetro.com
- 7. *Буянов Р.А.* Закоксовывание катализаторов. Новосибирск: Наука, 1983. 334 с.
- Маслянский Г.Н., Шапиро Р.Н. Каталитический риформинг бензинов: Химия и технология. Л.: Химия, 1985. 224 с.

УДК 66-9.094.3.097

© 2013 г. Е.В. Овчинникова¹, В.А. Чумаченко¹, Н.Н. Валуйских²

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПАРАМЕТРОВ ПРОЦЕССА НА ТЕМПЕРАТУРНЫЕ РЕЖИМЫ И ПРОИЗВОДИТЕЛЬНОСТЬ ТРУБЧАТОГО РЕАКТОРА ОКИСЛЕНИЯ МЕТАНОЛА В ФОРМАЛЬДЕГИД

¹ Федеральное государственное бюджетное учреждение науки Институт катализа СО РАН, г. Новосибирск

² ОАО «Акрон», г. Великий Новгород

Введение

Синтез формальдегида из метанола на оксидных железо-молибденовых (Fe-Mo) катализаторах — это крупнотоннажный, хорошо освоенный промышленный процесс. Высокий экзотермический эффект реакции окисления метанола и необходимость обеспечения условий безопасности процесса обусловливают его реализацию в трубчатых реакторах при низких исходных концентрациях метанола, ниже нижнего предела взрываемости смеси метанол — воздух [1]. В свою очередь низкие исходные концентрации метанола и высокая металлоемкость трубчатых аппаратов приводят к относительно низкой удельной производительности и ограничению мощности производства [1, 2]. Поэтому, несмотря на то, что процесс окисления метанола на оксидных катализаторах достаточно глубоко изучен, сохраняется необходимость в эффективных способах повышения мощности и увеличения производительности процесса.

В литературе рассматриваются условия, позволяющие увеличить исходную концентрацию метанола, ограниченную пределами взрываемости смеси воздух — метанол, например путем замены окислителя на N_2O [3] или частичной замены газаносителя N_2 на пропан [4]. Вследствие бо́льшей теплоемкости пропана по сравнению с N_2 такой прием способствует снижению адиабатического разогрева реакционной смеси.

Предлагается также новый для данного процесса мембранный реактор с неподвижным слоем катализатора, который позволяет достичь почти 100 % выхода формальдегида [5]. Несмотря на такие преимущества, как сдвиг термодинамического равновесия в сторону продуктов, независимое управление концентрациями двух реагентов на поверхности катализатора, возможность исключения последующего превращения целевого продукта и т.д., мембранные реакторы не получили широкого применения в промышленных процессах парциального окисления в основном из-за высокой стоимости мембран [6—8].

Ранее максимальная мощность трубчатого аппарата из-за высокой металлоемкости и особенностей системы масляного охлаждения ограничивалась величиной 24—32 т/сут 37 %-ного формалина [1]. Преодолеть такое ограничение начиная с 70-х гг. прошлого столетия пытались многие фирмы.

Фирмой Montedison S.p.A. реализован агрегат мощностью 270 т/сут 37 %-ного формалина из нескольких параллельных трубчатых реакторов, с единым узлом подачи сырья, абсорбционной колонной, теплообменником и др. [9]. Однако такая схема громоздка, лишена гибкости в управлении, не может компенсировать неоднородности, возникающие в

Овчинникова Е.В. – канд. техн. наук, ст. науч. сотрудник Института катализа им. Г.К. Борескова СО РАН, г. Новосибирск. Тел.: (383) 32-69-412. E-mail: evo@catalysis.ru

Чумаченко В.А. – канд. техн. наук, старший науч. сотрудник, руководитель группы комплексных технологических проектов того же института. Тел. тот же. E-mail: vachum@catalysis.ru

Валуйских Н.Н. – ведущий инженер управления по развитию производства ОАО «Акрон», г. Великий Новгород. Тел.: (8162) 99-72-06. E-mail: nvaluyskikh@vnov.acron.ru различных реакторах. В патенте [10] была предложена схема из двух расположенных последовательно реакторов с загрузкой в первый реактор серебряного, во второй — оксидного катализатора. Однако серьезным препятствием в реализации такой схемы является необходимость перехода через область взрывоопасных концентраций и большой перепад температур (около 400 °C) между реакторами [1].

В СССР процесс окисления метанола в формальдегид впервые в мировой практике был реализован в реакторе с адиабатическими слоями оксидного катализатора [11], что позволило создать крупнотоннажный промышленный блок мощностью более 180 т/сут 37 %-ного формалина. Впоследствии эта идея была запатентована в Италии применительно к адиабатическому реактору с радиальным течением газа [12] и реализована в опытно-промышленном масштабе. Эта технология также не получила дальнейшего развития.

В настоящее время шведской фирмой Perstorp AB предложена схема производства мощностью 300—350 т/сут 37 %-ного формалина в реакторе с 12,5—14,5 тыс. трубок [13].

Имеются данные, что на некоторых заводах реализована схема общей мощностью 200—250 т/сут 37 %-ного формалина на базе двух последовательно расположенных трубчатых реакторов с оксидным катализатором с промежуточным вводом метанола между реакторами. По сравнению с «параллельной» схемой, такая «последовательная» схема более проста и экономична в расчете на ту же мощность.

Благодаря широкому применению формальдегида для производства смол, пластмасс, связующих, взрывчатых веществ, в сельском хозяйстве, в фармакологии, при выработке кож и др., спрос на него постоянно растет. При общем развитии химической промышленности в азиатских странах особо отмечается спрос на формалин. Однако в условиях неустойчивости экономики, сезонных и локальных колебаний спроса на формалин и продукты его переработки [14], а также неизбежных в процессе производства различных технологических и технических проблем возникает необходимость снижения или увеличения производительности установки. Изменения производительности, безусловно, отражаются на поведении и технологических режимах работы реакторов. Значительные отклонения от проектных показателей могут привести к возникновению в реакторе критических режимов, обусловленных высокой параметрической чувствительностью процесса.

Очевидно, что при снижении мощности снижается общая газовая нагрузка на реактор, в результате чего уменьшается линейная скорость газа в трубках. Чем меньше линейная скорость газа, тем больше неравномерность параметров распределения массы и тепла внутри трубок. Этот случай интересен с точки зрения влияния неравномерности радиального теплопереноса на параметры каталитического процесса.

Необходимость превышения установленной нагрузки на реактор может возникнуть как в результате временного роста спроса на продукт, так и по причине снижения активности катализатора. Однако увеличение максимальной мощности реактора и производства в целом, как правило, бывает ограничено возможностями технологического оборудования и условиями процесса.

В настоящей статье на примере крупнотоннажного производства формалина в двух трубчатых реакторах, соединенных по «последовательной» схеме (далее - агрегат), рассмотрены особенности его работы в случаях: 1) необходимости снизить мощность установки, 2) необходимости увеличить мощность установки свыше проектных 100 %. Показано, какими технологическими приемами и насколько можно изменить максимальную мощность реактора с учетом возможных ограничений. В работе сопоставлены результаты расчетов для послойной загрузки трубок катализатором с различным разбавлением инертным материалом и загрузки катализатором без разбавления. Исследования базировались на математической модели трубчатого реактора и кинетической модели процесса, разработанных в Институте катализа СО РАН.

1. Кинетическая модель окисления метанола в формальдегид на оксидных катализаторах

В процессе окисления метанола в формальдегид на оксидном Fe-Mo катализаторе протекают две последовательные необратимые реакции [15]:

CH₃OH + 0,5O₂
$$\xrightarrow{w_1}$$
 CH₂O + H₂O +
+ 159 кДж·моль⁻¹; (I)

CH₂O + 0,5O₂
$$\xrightarrow{w_2}$$
 CO + H₂O + 230 кДжмоль⁻¹. (II)

В ранней работе по кинетике окисления метано-

ла в формальдегид [15] приведены уравнения скоростей образования продуктов (формальдегида и СО) типа уравнения Ленгмюра — Хиншельвуда в предположении, что реакции протекают на двух различных активных центрах. Позднее эта кинетическая модель была дополнена уравнением окисления метанола до СО [16]:

CH₃OH + O₂
$$\xrightarrow{w_3}$$
CO + 2H₂O +
+ 394 кДж·моль⁻¹. (III)

При исследовании окисления CH_3OH на катализаторе $Fe_2(MoO_4)_3$ [17] также показано, что CO образуется преимущественно при прямом окислении CH_3OH , а не CH_2O .

В настоящее время известны более детальные схемы реакции и кинетические уравнения, описывающие образование не только основных продуктов, но и таких побочных продуктов, как метилформиат (МФ), диметиловый эфир (ДМЭ), ацетальдегид (АА) и др. [17—20]. Однако вследствие очень низкой селективности Fe-Mo катализаторов по этим побочным продуктам их учет вносит весьма малый вклад в расчет основных показателей процесса окисления метанола в формальдегид.

В.Н. Бибиным [16] была разработана кинетическая модель скоростей реакции (формулы (1)—(2)) и определены ее параметры для зерен разной крупности. В широкой области варьирования условий реакции на зернах Fe-Mo катализатора разных размеров (марка ИК-6-2, ТУ 6-09-5501—86) основным продуктом был формальдегид, побочными продуктами — CO и H₂O; других продуктов в пределах точности эксперимента не наблюдалось.

Кинетические уравнения скоростей образования формальдегида и монооксида углерода по схеме реакций (формулы (I)—(III)) имеют следующий вид [16]:

$$W_{\Phi} = w_{1} - w_{2} = \frac{K_{1}C_{M}}{1 + a_{1}C_{M} + a_{2}C_{B} + a_{3}\frac{C_{M}}{C_{K}}} - \frac{K_{2}C_{\Phi}}{1 + b_{1}C_{M} + b_{2}C_{B} + b_{3}\frac{C_{\Phi}}{C_{K}}}; \qquad (1)$$

$$W_{CO} = w_{2} + w_{3} = \frac{K_{2}C_{\Phi}}{1 + b_{1}C_{M} + b_{2}C_{B} + b_{3}\frac{C_{\Phi}}{C_{K}}} + \frac{K_{2}C_{\Phi}}{1 + b_{1}C_{M} + b_{2}C_{B}} + \frac{K_{2}C_{\Phi}}{1 + b_{1}C_{M} + b_{2}C_{K}} + \frac{K_{2}C_{\Phi}}{1 + b_{1}C_{M} + b_{2}C_{K}} + \frac{K_{2}C_{\Phi}}{1 +$$

$$+\frac{K_{3}C_{M}}{1+b_{1}^{\prime}C_{B}+b_{2}^{\prime}\frac{C_{M}}{C_{K}}}.$$
 (2)

Расчеты промышленных реакторов трубчатого, комбинированного и адиабатического типов с использованием этой кинетической модели были полностью подтверждены результатами натурных экспериментов. В данной работе мы также использовали эту кинетическую модель.

2. Математическая модель трубчатого реактора

В качестве математического описания процесса окисления метанола в трубчатом реакторе с неподвижным зернистым слоем катализатора использована двумерная квазистационарная математическая модель, представляющая собой систему дифференциальных уравнений материального и теплового баланса с граничными условиями и учитывающая следующие основные физические и химические факторы [21]:

— теплоперенос по радиусу трубки за счет теплопроводности, по длине трубки — за счет конвекции;

 массоперенос по радиусу трубки за счет диффузии, по длине трубки — за счет конвекции;

 теплообмен между наружной поверхностью трубки и хладагентом;

 изменение теплофизических свойств реакционной смеси в соответствии с изменением температуры по слою катализатора;

 скорость химических превращений согласно кинетической модели окисления метанола в формальдегид на оксидном катализаторе [16] и выделение тепла в результате протекания экзотермических реакций.

Такая математическая модель дает возможность рассчитывать аксиальные и радиальные профили температур и концентраций в слое катализатора и анализировать зависимость технологических показателей процесса от входных параметров.

Отметим важную особенность расчетов трубчатых реакторов. Указанная математическая модель, как и иные аналогичные модели, позволяет определять условия протекания каталитического процесса в единичной трубке в предположении идентичного поведения всех других трубок контактного аппарата. Это предполагает равномерное распределение и однородность потока по всему сечению трубчатого реактора. Однако часто конструкция промышленного аппарата и/или устройства ввода сырья создает неоднородности распределения скоростей, температур и концентраций в реакторе. В случае экзотермических процессов с высокой параметрической чувствительностью, к которым относится и процесс окисления метанола в формальдегид, такие неоднородности могут приводить к устойчивым или временным отклонениям от штатных технологических режимов с негативными последствиями. С целью устранения неоднородностей потоков в конструкции реакторов предусматривают специальные смесительные и распределительные устройства, а для равномерного заполнения трубок катализатором используют загрузочные устройства. Расчет таких устройств производится с помощью методов вычислительной гидродинамики [22] и широко используется при проектировании химических реакторов.

3. Катализатор

В рассматриваемом здесь агрегате синтеза формальдегида применяется зарубежный промышленный катализатор *F* в форме колец 4,5 × 4,5 × 1,25 мм (диаметр × высота × толщина стенки). Катализатор *F* характеризуется атомным соотношением Mo/Fe = = 1,8÷2,5 и площадью удельной поверхности S_{yg} = = 5,3÷6,8 м²/г, что соответствует характеристикам катализатора ИК-6-2.

Проведено сравнение активности катализаторов *F* и ИК-6-2 в реакции окисления метанола. Катализаторы испытывались в виде фракции 0,5— 1,0 мм, этот размер близок к толщине стенки кольца (~1 мм). Исследования проводились в изотермическом проточном реакторе в диапазоне температур 219—283 °С при начальной концентрации метанола 5,4 об.% и объемной скорости смеси метанол — воздух 17000 ч⁻¹. Основным продуктом был формальдегид, побочным продуктом — СО. Следы побочных продуктов CO₂, МФ и ДМЭ отсутствовали (в пределах точности измерений).

Экспериментальные зависимости конверсии метанола (X) и селективности по формальдегиду (S_{Φ}) от температуры приведены на рис. 1, *а*. Конверсия на катализаторе F выше, а селективность практически не отличается от показателей на катализаторе ИК-6-2, при этом с повышением температуры увеличивается как X, так и S_{Φ} . В результате на S_{Φ} оказывают влияние два параметра: T и X. Известно, что селективность по формальдегиду снижается с повышением конверсии при постоянной температуре и увеличении времени контакта [15]. В этом случае

Рис. 1. Сравнение катализаторов *F* (1) и ИК-6-2 (2) в окислении метанола в формальдегид: *a* – зависимость S_{Φ} (\bullet ; \bigcirc) и *X* (\blacksquare ; \Box) от температуры; *б* – зависимость S_{Φ} от конверсии (по данным рис. 1, *a*); *в* – температурная зависимость константы скорости первого порядка *k*' в аррениусовских координатах. *T* = 219÷283 °C; C_{M}^{0} = 5,4 об.%; объемная скорость смеси 1700 ч⁻¹

делать вывод о равенстве S_{Φ} на двух катализаторах (см. рис. 1, *a*) не вполне корректно.

Для сравнения S_{Φ} и активности катализатора F относительно ИК-6-2, экспериментальные результаты были приведены в виде зависимостей S_{Φ} от X (см. рис. 1, δ) и наблюдаемой константы скорости первого порядка k' в аррениусовских координатах (см. рис. 1, ϵ).

Из экспериментальных данных, представленных на рис. 1, можно сделать вывод о симбатном характере изменения активности и селективности обоих исследованных катализаторов, причем константы скорости k' окисления метанола на катализаторе Fна 8—10 % выше (см. рис. 1, e), а S_{Φ} на 4—5 % ниже, чем на катализаторе ИК-6-2 (см. рис. 1, δ).

В результате сравнения активности и селективности катализаторов F и ИК-6-2 с одинаковым соотношением Мо/Fe, одинаковой удельной поверхностью, в одинаковых условиях реакции получены практически идентичные кинетические зависимости (см. рис. 1), что позволило нам использовать систему кинетических уравнений (1), (2).

В соответствии с полученными корреляциями по наблюдаемым константам скорости (см. рис. 1, e) и селективности (см. рис. 1, δ) для катализатора Fбыли уточнены значения предэкспоненциальных множителей констант скоростей в уравнениях (1) и (2); значения температурных коэффициентов констант (энергии активации) не изменялись.

Максимально допустимая температура на катализаторе F, обусловленная его термической стабильностью, считается равной 410 °С. При прогнозировании стабильной работы реактора окисления метанола в формальдегид с учетом возможных локальных перегревов катализатора в трубке нами было принято, что температура в слое катализатора должна быть в диапазоне 360—380 °С.

4. Исходные данные для расчетов реакторов

Рассмотрены различные варианты расположения катализатора в трубчатых реакторах синтеза формальдегида, которые схематично показаны на рис. 2. Приняты следующие обозначения: 100 % Кат. и 100 % Ин. — полная загрузка катализатором и инертным материалом соответственно; 85 % Кат./15% Ин. и 70 % Кат./30 % Ин. — загрузка разбавленным катализатором, содержащим 15 и 30 % инертного материала соответственно. В расчетах активность катализатора задавалась в соответствии с его содержанием в слое путем умножения константы скорости на соответствующий поправочный коэффициент.

Загрузка неразбавленным катализатором на всю высоту трубки (рис. 2, схема *a*) — часто встречающийся в промышленности вариант загрузки труб-

Рис. 2. Варианты загрузки катализатора (Кат.) и инертного материала (Ин.) в современных трубчатых реакторах

чатого реактора (далее — *реактор*). Такая загрузка в нашей работе рассматривается в качестве «модельной», что позволяет наглядно представить температурные режимы работы реактора в случаях уменьшения мощности производства.

При загрузке современных промышленных трубчатых реакторов в основном используют различные варианты разбавления катализатора керамическими кольцами в качестве инертного материала. Загрузка «инерта» перед слоем катализатора и разбавление «инертом» части слоя катализатора в области «горячей точки» позволяют эффективно регулировать температурный режим в трубках. Такой вариант загрузки принят нами для исследования *агрегата*: первый из двух реакторов (P1) загружен по схеме, приведенной на рис. 2, *б*1, а второй (P2) — по схеме, приведенной на рис. 2, *б*2.

Отвод реакционного тепла осуществляется с помощью высокотемпературного органического теплоносителя (ВОТ), циркулирующего в межтрубном пространстве. Согласно промышленным данным технически допустима эксплуатация хладагента при максимальной температуре $T_W = 400$ °C [23]. Однако вследствие высокой параметрической чувствительности процесса даже при более низких температурах хладагента температура катализатора в «горячей точке» $T_{\Gamma.T.}$ может превысить допустимый предел его термостойкости. Поэтому в большинстве случаев пределы повышения температуры хладагента T_W определяются ограничением на величину $T_{\Gamma.T.}$

Расчеты *реактора* (рис. 2, *a*) производились при следующих значениях параметров: высота слоя катализатора L = 800 мм, исходная концентрация метанола $C_{\rm M}^0 = 6,5$ об.%, кислорода $C_{\rm O_2}^0 = 7,0$ об.%, линейная скорость 0,9—2,2 м/с, внутренний диаметр трубки 21,3 мм, температура спирто-воздушной смеси (СВС) на входе в реактор $T_{\rm BX} = 170$ °C, температура хладагента $T_W = 270$ °C.

Как отмечено выше, под *агрегатом* здесь понимаются два расположенных последовательно трубчатых реактора P1 и P2 с дополнительным вводом метанола в реакционную смесь перед реактором P2. Для выравнивания потока на входе в слой, нагрева CBC до температуры начала реакции, защиты от возможных проскоков капель метанола, а также для разбавления катализатора применяются керамические кольца примерно одинаковых размеров с частицами катализатора. Общая высота слоев катализатора в реакторах P1 и P2 равна 950 и 1050 мм

	олица 1					_	
Hā	араметр	ы газовои	смеси,	пост	упающеи	в аг	регат

	Deautan	Соста	в смеси	1/ 0/	11 11/0				
11, %	геактор	Рец.	Рец. С _М С ₀₂		V _∑ , %	<i>U</i> , м/с			
100	P1	34,1	5,74	13,86		1,78			
100	P2	-	8,53	9,6	100,0	1,62			
0.2	P1	34,5	5,75	14,11		1,73			
92	P2	-	7,75	10,00	96,5	1,60			
80	P1	34,1	5,75	13,99		1,64			
80	P2	-	6,75	10,00	89,4	1,50			
7/	P1	35,0	5,75	13,94		1,59			
74	P2	-	6,25	10,00	87,0	1,41			
Примечание. П – производительность; Рец. – газ									
рецикла; V _Σ = V _{рец} + V _{возд} + V _{M1} + V _{M2} ; U – линейная скорость в трубках									

соответственно, а с учетом «инерта» — 1050 и 1250 мм (рис. 2, б1 и б2).

Общий поток расходуемого сырья, подаваемого в агрегат, состоит из газа рецикла, «свежих» воздуха, метанола (M) на входе в реактор P1 и метанола на входе в реактор Р2. Реакционная смесь (V_{Σ}), включающая газы рецикла ($V_{\rm peu}$), «свежие» потоки метанола ($V_{\rm M}$) и воздуха ($V_{\rm возд}$), подается в реактор Р1 с концентрацией $C_{\rm M}^0 = 5,7$ об.% и $C_{\rm O_2}^0 = 13,94$ об.% соответственно. Относительно низкая концентрация $C_{\rm M}^0$ перед реактором P1 компенсируется более высокой концентрацией $C_{\rm M}^0 = 6,25 \div 8,5$ об.% перед реактором Р2 за счет добавления свежего метанола. На входе в Р2 концентрация $C_{\Omega_2}^0$ не превышает 10 об.%. Температуры реакционной смеси на входе в реакторы Р1 и Р2 различны: на входе в Р1 $T_{\rm BX} = 170$ °C, а на входе в Р2 $T_{\rm BX} = 160$ °С. Линейные скорости в реакторах Р1 и Р2 составляют 1,6-1,8 м/с и 1,4-1,6 м/с соответственно. Линейная скорость в реакторе Р2 ниже за счет увеличения на 15 % количества трубок по сравнению с реактором Р1. Производительность агрегата (П) может быть повышена как путем увеличения общего потока, так и путем увеличения концентрации $C_{\rm M}^0$ перед реактором Р2 (табл. 1).

5. Влияние радиального переноса тепла в трубках на показатели каталитического процесса

Линейная скорость газа внутри трубок влияет на значение коэффициента эффективной радиальной теплопроводности, а следовательно, на аксиальные и радиальные профили температуры в слое катализатора.

Эффективные коэффициенты радиальной теплопроводности и диффузии в слое катализатора определялись по следующим зависимостям [21]:

$$\lambda_{r_{core}} = \lambda_{r_{bed}} + \frac{\lambda_{r_{gas}}}{k} \text{RePr;}$$
$$D_{r_{core}} = D_{r_{bed}} + \frac{D_{r_{gas}}}{k} \text{ReSc,}$$

где $\lambda_{r_{bed}}$, $D_{r_{bed}}$ — коэффициенты теплопроводности и диффузии в непродуваемом слое соответственно; k — коэффициент, учитывающий соотношение диаметра трубки реактора и диаметра частицы:

$$k = \frac{8}{1,78} \left[2 - \left(1 - \frac{2}{D_{tube}/d_p} \right)^2 \right].$$

Критерии Рейнольдса (Re), Прандтля (Pr) и Шмидта (Sc) определяются следующим образом:

$$\operatorname{Re} = \frac{d_p u_l \rho_f}{\mu}, \quad \operatorname{Pr} = \frac{\mu c_p}{\lambda_{r_{gas}}}, \quad \operatorname{Sc} = \frac{\mu c_p}{D_{r_{gas}}},$$

Очевидно, что уменьшение общего расхода реакционной смеси, подаваемой в реактор, приводит к уменьшению линейной скорости газа в трубках.

5.1. Реактор: загрузка катализатором без разбавления

На примере *реактора* с однослойной загрузкой неразбавленного катализатора исследовано влияние линейной скорости на температуру в трубке при широком варьировании параметров. На рис. 3, *а* приведены продольные профили температуры по длине трубки, рассчитанные при различных линейных скоростях *U*. Соответствующие радиальные профили температуры в области «горячей точки» приведены на рис. 3, *б*.

Уменьшение линейной скорости от 2,2 до 0,9 м/с при прочих равных условиях (L = 0,8 м, $T_{\rm BX} =$ = 170 °C, $T_W = 270$ °C, $C_{\rm M}^0 = 6,5$ об.%, $C_{\rm O_2}^0 = 7,0$ об.%) приводит к значительному возрастанию максимальной температуры в слое катализатора $T_{\Gamma,{\rm T}}$ от 358 до 423 °C и смещению координаты «горячей точки» примерно на 0,2 м ближе к началу слоя (см. рис. 3, *a*). При этом увеличивается и градиент температур ΔT по радиусу трубки, между центром и пристеночной зоной (см. рис. 3, *б*): с уменьшением линейной скорости от 2,2 до 0,9 м/с ΔT увеличивается от 51 до 92 °C. Подобные изменения тепловых режимов в трубке объясняются уменьшением коэффициента радиальной теплопроводности слоя λ_R при уменьшении скорости потока в трубках. Снижение *U* почти в 2,5 раза приводит к уменьшению λ_R в лобовой части слоя катализатора (L = 0.04 м), где температура слоя близка к температуре входа $T_{\rm BX}$, в 1,8 раза

Рис. 3. Аксиальные (*a*) и радиальные в «горячей точке» (*б*) профили температуры в *реакторе* при значениях *U* (м/с): *U*1 – 0,9; *U*2 – 1,1; *U*3 – 1,5 и *U*4 – 2,2

Рис. 4. Изменение эффективного коэффициента теплопроводности λ_R по радиусу трубки на входе в слой длиной 0,04 м (*a*) и в «горячей точке» (*б*) при значениях *U* (м/с): *U*1 – 0,9; *U*2 – 1,1; *U*3 – 1,5 и *U*4 – 2,2

(рис. 4, *a*), а в области «горячей точки» — в 1,9 раза (см. рис. 4, *б*).

Как следует из графиков рис. 3, в исследуемых условиях при линейных скоростях U < 2,2 м/с максимальная температура в слое катализатора (>380 °C) превышает допустимое значение для стабильной работы катализатора.

Таким образом, уменьшение линейной скорости сопровождается уменьшением эффективной теплопроводности, увеличением перепада температур по радиусу и длине трубки, что приводит к заметному возрастанию температуры в «горячей точке», а также к возможному превышению допустимых температур в слое катализатора.

5.2. Агрегат из двух последовательных реакторов: загрузка катализатора, разбавленного «инертом»

В реакторах с послойной загрузкой катализатора условия ведения процесса будут иными, однако установленную взаимосвязь между температурой в «горячей точке» и линейной скоростью газа следует принимать во внимание.

Проанализируем ряд технологических приемов, с помощью которых в агрегате можно регулировать в допустимых пределах температуру $T_{\Gamma,\Gamma}$ и тем самым обеспечить длительный срок службы катализатора. Такими приемами являются: перераспределение нагрузки по метанолу между двумя последовательно расположенными реакторами; снижение активности катализатора в области «горячей точки» путем разбавления его «инертом»; снижение входной температуры потока перед реактором Р2; увеличение числа трубок в реакторе Р2 относительно реактора Р1.

В среднем в ходе эксплуатации мощность производства формалина по различным причинам может снижаться на 10—15 %. С целью исследования изменений тепловых режимов при вариации линейной скорости мы рассмотрели вариант снижения нагрузки по газу от 100 до 74 %. В этом случае линейная скорость в реакторе Р1 уменьшится от 1,8 до 1,6 м/с, а в реакторе Р2 — от 1,6 до 1,4 м/с.

В приведенных выше расчетах *реактора* в широких пределах (≈60 %) варьировали только линейную скорость *U*. При анализе нагрузки в пределах 74— 100 % в *агрегате* изменяли линейную скорость и входную концентрацию метанола перед P2, при этом *U* изменяли не столь значительно, всего на 11— 13 %.

Расчет тепловых и концентрационных полей проводился раздельно для реакторов P1 и P2, при этом учитывался нагрев потока в слое керамических колец при многослойной загрузке трубки. В расчетах были также приняты следующие допущения: увеличение объема реакционной смеси после P1 пренебрежимо мало, в результате поток в P2 определялся суммой исходного потока перед P1 и потока

Рис. 5. Средние по радиусу трубки профили температуры и концентраций реагентов при нагрузках *агрегата* (%): 100 (1) и 74 (2). М – метанол, Ф – формальдегид, СО – монооксид углерода

метанола в P2; в газах рецикла после абсорбера и соответственно в реакционной смеси перед реактором P1 отсутствуют продукты реакции (формальдегид, CO, H₂O).

Результаты расчетов приведены на рис. 5 и 6. На рис. 5 показаны средние по радиусу трубки профили температуры и концентрации реагентов по длине слоя.

Обычно в промышленном реакторе, благодаря засыпке «инерта» в верхнюю часть трубки, газовая смесь нагревается в слое «инерта» до температуры $T_{\rm BX} \approx T_W$, поэтому можно подавать входную смесь с температурой $T_{\rm BX}$ на 50—100 °С ниже температуры T_W . Однако расчеты показали, что при отличии $T_{\rm BX}$ на 100—110 °С и $T_W = 270$ °С высоты слоя «инерта» 0,1 м (в Р1) или 0,2 м (в Р2) может оказаться недостаточно для прогрева потока до температуры T_W . Так,

Рис. 6. Радиальные профили температуры (*a*) и эффективного коэффициента теплопроводности λ_R в «горячей точке» (*б*) и на входе в слой длиной 0,04 м (*в*) при нагрузках *агрегата* (%): 100 (*1*) и 74 (*2*)

значения температуры газа на входе в разбавленный слой катализатора в реакторах P1 и P2 равны 235 и 255 °C соответственно. Поток нагревается до температуры $T_W = 270$ °C в слое разбавленного катализатора на длине слоя 0,19—0,25 м, т.е. $\approx 10 \div 20$ % объема загрузки катализатора работает не в оптимальных условиях. Поскольку теоретическим оптимальным температурным профилем окисления метанола в формальдегид на оксидном катализаторе является изотерма при $T \approx T_{max}$ [2, 24, 25], то любое снижение температуры по длине слоя катализатора приводит к повышению селективности по побочным продуктам и к большему выделению тепла.

При снижении нагрузки от 100 до 74 % линейная скорость *U* в P1 снижается от 1,78 до 1,59 м/с, что при концентрации $C_{\rm M}^0 = 5,75$ об.% приводит к увеличению температуры в «горячей точке» на 5 °С (см. рис. 5, P1). Продольные профили температур и концентраций в P1 при различных нагрузках различаются мало. Незначительно различаются радиальные профили температур в «горячей точке» и радиальные профили коэффициента эффективной теплопроводности λ_R в «горячей точке» и в лобовом слое катализатора длиной 0,04 м (см. рис. 6, P1).

При нагрузке 100 % происходит существенное перераспределение подачи метанола, и в реакторе Р2 подается большее количество метанола — 8,4 об.% вместо 6,25 об.%, подающихся при 74 %-ной нагрузке.

В результате в Р2 продольные (см. рис. 5, Р2) и радиальные профили (см. рис. 6, Р2) заметно различаются, а расчетная температура $T_{\Gamma,\Gamma}$ в Р2 при нагрузке 100 % приближается к максимально допустимому значению T_{MAX} , равному 380 °С.

На основании результатов моделирования *реактора* и *агрегата* можно сделать следующие выводы. Снижение мощности производства из-за снижения нагрузки по газу приводит к уменьшению линейной скорости в трубках. В свою очередь уменьшение линейной скорости сопровождается уменьшением коэффициента эффективной теплопроводности, что приводит к увеличению градиентов температур по радиусу и длине трубки. Снижение линейной скорости при одновременном увеличении входной концентрации метанола наиболее опасно, поскольку сочетание этих факторов может привести к значительному увеличению температуры в слое катализатора и к превышению максимально допустимых температур в «горячей точке».

Полученные результаты носят принципиальный характер и наглядно демонстрируют важность учета зависимости тепловых режимов трубчатого реактора от параметров теплопереноса и входных условий.

6. Моделирование работы промышленного *агрегата*

С целью проверки точности математической модели проведен расчет агрегата при нагрузках 80 и 92 % с учетом данных о работе промышленной установки. Результаты расчета сопоставлены с работой промышленной установки. В расчетах учитывались следующие факторы: изменение U, соответствующее увеличению общего потока на входе в Р2 вследствие увеличения объема после Р1 за счет протекания реакции; наличие паров воды и других продуктов реакции в потоке перед Р1 в результате смешения «свежих» потоков метанола и воздуха с газом рецикла. Таким образом, входная концентрация метанола в СВС перед Р1 определяется соотношением объемов газа рецикла и «свежего» метанола в Р1. Составы реакционной смеси на входе в Р1 и Р2, использованные для расчета промышленного агрегата, приведены в табл. 2.

В процессе эксплуатации трубчатого реактора для компенсации потери активности катализатора в ходе пробега увеличивают T_W . Если катализатор в реакторы Р1 и Р2 был загружен не одновременно, то T_W в реакторах Р1 и Р2 могут быть различными. Согласно данным о работе промышленного *агрегата* на свежем катализаторе средняя температура T_W за рассматриваемый период составила 272 °С. Поскольку в наших расчетах моделировались условия

Таблица 2 Состав исходных потоков на входе в реакторы Р1 и Р2

Нагрузка, %	М	φ	02	H ₂ 0	CO					
Поток в Р1, об.%										
80	5,75	0,026	13,4	2,6	0,72					
92	5,74	0,026	13,8	2,5	0,67					
100	5,74	0,024	13,9	2,4	0,64					
	Поток в Р2, об.%									
80	6,83	4,57	9,32	7,86	1,13					
92	7,85	4,50	9,64	7,62	1,05					
100	8,53	4,46	9,60	7,48	1,01					
Примечание. М – метанол, Ф – формальдегид										

100

 $S_{\phi}; X, \%$

гис. /. Селективность S_Ф и конверсия метанола X при различных нагрузках по газу. Линии – расчетные значения, точки – измеренные значения

работы установки на свежем катализаторе, то T_W в обоих реакторах принималась одинаковой и равной 272 °С.

На рис. 7 приведены результаты сопоставления расчетных и фактических значений конверсии метанола X и селективности по формальдегиду S_{Φ} после *агрегата* в целом при различных значениях нагрузки. Наблюдается хорошее совпадение, погрешность не выходит за пределы 5—7 отн.%.

Приведены также результаты сопоставления расчетных и измеренных профилей температуры по длине трубок в реакторах P1 и P2: средней температуры по радиусу трубки (рис. 8) и температуры в центре трубки (рис. 9). Промышленные данные взяты по показаниям термопар, размещенных в различных трубках по сечению реактора. Превышение измеренных значений максимальной температуры над расчетными достигает 20—25 °C, что можно объяснить неоднородностью и неравномерностью распределения потоков по сечению реактора. С учетом значительных погрешностей измерения температуры согласие между расчетными и фактическими данными можно считать удовлетворительным.

Наличие неоднородностей потока в промышленном реакторе, которые могут «провоцировать» локальные перегревы катализатора, а также различие расчетных и измеренных температур на 20— 25 °С подтверждает обоснованность учитываемого нами резерва ≈30 °С от максимально допустимой для катализатора температуры (380 вместо 410 °С) при определении температурных ограничений в расчетах каталитического процесса.

Кроме того, указанные неоднородности потока могут приводить, с одной стороны, к перегреву катализатора и последующей потере его активности и селективности, с другой стороны, создавать опасные ситуации в реакторах. Для предотвращения

Рис. 8. Линейные профили температуры, усредненные по радиусу, при нагрузках *агрегата* (%): 92 (1) и 80 (2). Линии – расчетные значения, точки – измеренные значения

Рис. 9. Линейные профили температуры в центре трубки при нагрузках *агрегата* (%): 92 (1) и 80 (2). Линии – расчетные значения, точки – измеренные значения

подобных явлений необходимо использовать дополнительные устройства, обеспечивающие однородное смешение составных частей потока и его равномерное распределение по реакционным трубкам.

7. Исследование технологических приемов повышения номинальной мощности промышленного *агрегата*

В качестве технологических приемов повышения производительности *агрегата* сверх номинальной (100 % от проектной) в данной работе рассмотрены: повышение температуры хладагента, перераспределение подачи метанола между реакторами Р1 и Р2, повышение общей нагрузки по газу.

Выше было показано, что даже при 92 %-ной нагрузке промышленного *агрегата* в нем могут возникать опасные режимы из-за наличия значительных неоднородностей потока. В частности температура в «горячей точке» *Т*_{Г.Т.} может превысить 380 °C.

Расчеты в настоящем разделе выполнены в предположении, что благодаря устройствам для полного перемешивания и равномерного распределения потока практически устранена неоднородность полей скоростей потока по сечению реактора. В этом случае нет необходимости создания резерва по температуре из-за возможных локальных перегревов в слое катализатора, и максимальная температура может быть ограничена только термической стабильностью катализатора. Таким образом, максимально допустимая температура в слое катализатора $T_{\Gamma T.}$ принята равной 410 °C.

Повышение общей нагрузки по газу при неизменных концентрациях метанола и кислорода с целью увеличения мощности установки свыше 100 % связано с увеличением расхода воздуха, метанола и газов рецикла. Как правило, одновременное увеличение этих параметров бывает ограничено техническими возможностями существующего оборудования.

Максимально допустимая производительность газодувки, которая обеспечивает нагнетание потока «свежего» воздуха и газов рецикла (так называемого «дутья»), позволяет увеличить их подачу не более чем на 4 %. Подача метанола может быть увеличена без существенных ограничений.

При увеличении потока реакционной смеси на установку сверх максимального необходимо учитывать ограничения на перепад давления ΔP . Расчет гидравлического сопротивления во всем диапазоне исследованных условий показал, что благодаря загрузке трубок *агрегата* керамическими кольцами и кольцеобразным катализатором ΔP в 1,8–2 раза ниже допустимого значения, т.е. существует значительный запас по гидравлическому сопротивлению реакторов.

Исследовано влияние на температуру в «горячей точке» и производительность промышленного *агрегата* температуры хладагента T_W и концентрации метанола C_M^0 в реакторах Р1 и Р2 как следствие перераспределения подачи метанола, изменения расхода воздуха, циркуляционного газа и метанола. Показано, как эти параметры процесса влияют на селективность по формальдегиду S_{Φ} и конверсию метанола X. В вариантах с увеличением подачи исходного сырья определяли также G_M — расходный коэффициент метанола на 1 т 37 %-ного формалина.

7.1. Температура хладагента

Температура хладагента является важнейшим управляющим параметром, от которого зависят основные показатели процесса, такие как температура в «горячей точке» $T_{\Gamma.T.}$, производительность агрегата П, селективность по формальдегиду S_{Φ} и конверсия метанола Х.

На рис. 10 приведены результаты расчетов при «синхронном» изменении T_W в реакторах P1 и P2, из которых видно, что с увеличением в реакторах T_W от 272 до 280 °С производительность *агрегата* «P1 + P2» увеличивается на 0,95 %. Однако в реакторе P2 при $T_W > 274$ °С максимальная температура $T_{\Gamma.T.}$ превышает допустимое значение 410 °С (см. рис. 10, *a*), в то время как максимальная температура в реакторе P1

Рис. 10. Влияние T_W на показатели работы *агрегата* при T_W (P1) = T_W (P2)

не выше 370 °С. С увеличением T_W общая конверсия *X* увеличивается примерно на 1 %, а селективность S_{Φ} меняется слабо (см. рис. 10, δ). Тем не менее «синхронное» увеличение температуры хладагента в обоих реакторах не более чем на 4 °С позволяет незначительно (на 0,4 %) увеличить мощность установки при 100 %-ной нагрузке по газу, при этом не выходя за пределы термостабильности катализатора.

На рис. 11 приведены результаты расчетов, когда в реакторе Р1 температура T_W изменялась, а в реакторе Р2 была фиксированной и равной 272 °С. Исследование влияния T_W в реакторе Р1 показало, что увеличение температуры T_W в реакторе Р1 при неизменной T_W в реакторе Р2 позволяет снизить в Р2 температуру в «горячей точке» $T_{\Gamma,\Gamma}$ (см. рис. 11, *a*), однако при этом снижается общая степень превращения метанола X после агрегата (см. рис. 11, *б*), что в целом приводит к снижению производительности реакторного блока на 0,6 % в расчете на 37 % формалина.

Таким образом, одновременная вариация температуры хладагента в реакторах Р1 и Р2 не дает

Рис. 11. Влияние *T*_W в Р1 на показатели работы *агрегата* при *T*_W (P2) = 272 °C

существенного увеличения производительности, а вариация T_W только в реакторе Р1 ведет к уменьшению производительность *агрегата*.

7.2. Перераспределение подачи метанола между реакторами Р1 и Р2

Изменение показателей процесса вследствие перераспределения подачи метанола в реакторы Р1 и Р2 исследовано при условии постоянства общего расхода реакционной смеси на установку. Подача исходных реагентов соответствует составу смеси при номинальной производительности П = 100 %, т.е. при следующем распределении метанола между реакторами: Р1 — 38 %, Р2 — 62 % (табл. 3, № 1, 2). В табл. 3 приведен один из рассмотренных вариантов перераспределения подачи метанола при разных температурах хладагента. Расход метанола, подаваемого в реактор Р1, увеличен до 42 % (на 4 %), а подаваемого в реактор Р2 уменьшен до 58 % (на 4 %) при неизменном расходе «дутья» (№ 3-5, табл. 3). Для сравнения приведены варианты без перераспределения метанола, но при разных температурах хладагента, равных 272 и 280 °С (№ 1 и 2, табл. 3).

Как отмечалось выше, невозможно увеличить производительность сверх максимальной только за счет повышения температуры хладагента в реакторах Р1 и Р2 до 280 °С без перераспределения метано-

ла из-за перегрева катализатора в области «горячей» точки реактора Р2 до 433 °С (№ 2, табл. 3).

Перераспределение подачи метанола путем увеличения его расхода в реактор Р1 и одновременного уменьшения в реактор Р2 приводит к соответствующему увеличению концентрации $C_{\rm M}^0$ и линейной скорости U в Р1 и к уменьшению концентрации $C_{\rm M}^0$ в Р2. В результате в Р1 повышается $T_{\rm \Gamma.T.}$ и увеличиваются X и S_{Φ} , а в Р2 значения этих показателей уменьшаются. В итоге указанные изменения при $T_W = 280$ °С ведут к снижению производительности установки (\mathbb{N} 2, 4, табл. 3).

Поскольку перераспределение метанола позволяет снизить максимальную температуру в P2 (№ 3, табл. 3), то становится возможным увеличить температуру хладагента T_W в P2, так чтобы максимальная температура $T_{\Gamma,T}$ не превышала 408 °C (№ 4, табл. 3). В результате мощность установки можно увеличить на 0,68 % (№ 4, табл. 3). Дальнейшее увеличение температуры T_W только в P1 позволяет снизить $T_{\Gamma,T}$ в P2 до 406 °C, однако мощность при этом тоже снижается (№ 5, табл.3). Такое влияние T_W было отмечено выше (см. рис. 11).

Установлено также, что если количество перераспределяемого между реакторами метанола будет больше 4 %, то это приведет к более заметному снижению мощности, что не компенсируется положительным эффектом от повышения температуры T_W .

Варьирование температуры и концентрации метанола в пределах, обсуждаемых в данном разделе, слабо влияет на селективность S_{Φ} , а увеличение мощности *агрегата* и уменьшение расходного коэффициента по метанолу в основном происходит из-за роста конверсии X. Показатель $G_{\rm M}$ изменяется обратно пропорционально X: чем больше значение X, тем меньше значение $G_{\rm M}$.

Таким образом, увеличение T_W до 280 °С и перераспределение до 4 % общего расхода метанола при неизменном общем потоке реакционной смеси на установку не дает заметного повышения производительности, однако несколько снижает расходный показатель $G_{\rm M}$.

7.3. Изменение газовой нагрузки на реакторы Р1 и Р2

Исследовано влияние увеличения подачи «свежих» реагентов и рециклового газа на работу реакторного блока P1 и P2. Результаты расчетов приведены в табл. 4 и на рис. 12. Проанализировано влияние на производительность установки расхода метанола и воздуха в P1 (№ 6, табл. 4), расхода метанола и воз-

Таблица 3

Влияние на производительность *агрегата* перераспределения подачи метанола в реакторы Р1 и Р2 при постоянстве общего расхода метанола. Мольный состав входного потока: 86,2 % «дутье» (52,2 % воздух + 34,0 % рецикл) и 13,8 % метанол

		Вход					Показатели работы агрегата					
Nº	Реактор	С ⁰ _М , об.%	С ⁰ ₀₂ , об.%	Расход М в Р1 и Р2, об.%	<i>T_w,</i> °C	<i>U</i> , м/с	<i>Т</i> _{Г.Т.} , °С	S _φ , %	X, %	П, %	<i>G_M,</i> кг/т	
1	P1	5,74	13,86	38	272	1,78	347	02.7	08.0	100.00	429,7	
	P2	8,53	9,6	62	272	1,66	402	95,7	90,0	100,00		
2	P1	P1 5,74 13,86 38 280	1,78	369	02 5	00.2	100.05	625 6				
2	P2	8,42	9,54	62	280	1,66	433	93,5	99,2	100,95	425,0	
2	P1	6,28	13,73	42	280	1,79	385	02 /	071	09 72	435,3	
5	P2	7,88	9,21	58	272	1,67	372	95,4	97,1	90,75		
	P1	6,28	13,73	42	280	1,79	385	02 5	00 0	100 69	126 9	
4	P2	7,88	9,21	58	280	1,67	408	93,5	90,9	100,08	420,0	
5	P1	6,28	13,86	42	285	1,79	400	02/	00.0	100 50	1076	
	P2	7,84	9,19	58	280	1,67	406	93,4	90,0	100,50	427,0	

Таблица 4

Влияние изменения газовой нагрузки на работу реакторов Р1 и Р2 при T_W = 272 °C

					И	сходны	е параме	тры	Показатели процесса						
Nº	Реактор	Уве. пото	личени ков отн № 1, о	е под юсите тн.%	цачи ельно	С ⁰ м, об.%	С ⁰ ₀₂ , об.%	Распреде- ление М в Р1 и Р2. об.%	<i>Т_w,</i> °С	<i>U,</i> м/с	7 _{г.т.} , °С	S _Φ , %	X, %	П, %	<i>G</i> _М , кг/т
		Возд.	Рец.	М	V_{Σ}										
1	P1	-	-	-		5,74	13,86	37,9	272	1,78	347	037	08.0	100.00	<i>/</i> /20 7
1	P2			-	100,0	8,53	9,60	62,1	272	1,66	402	,,,	90,0	100,00	429,7
6	P1	+4	-	+4		5,83	14,07	38,8	272	1,83	348	02.6	076	101 00	(21.0
0	P2			_	+2,3	8,35	9,77	61,2	272	1,70	390	95,0	97,0	101,00	431,9
7	P1	+4	-	+4		5,83	13,99	37,9	272	1,83	348	02.0	07.0	10/ 00	(20.4
/	P2			+4	+2,6	8,65	9,67	62,1	272	1,71	403	95,9	97,9	104,00	429,4
0	P1	+4	+4	+4		5,74	13,85	37,9	272	1,85	378	02.6	07 /	102.26	/22 0
0	P2			+4	+4,0	8,40	9,52	62,1	272	1,73	389	95,0	97,4	103,20	432,0

духа в Р1 и метанола в Р2 (№ 7, табл. 4), расхода метанола, воздуха и рецикловых газов в Р1 и метанола в Р2 (№ 8, табл. 4). Кроме того, для всех вариантов расходов, указанных в табл. 4, рассмотрено влияние увеличения температуры хладагента (см. рис. 12). Вариант № 1 принят как базовый.

Увеличение примерно на 4 % подачи «свежего» воздуха и метанола в Р1 (\mathbb{N} 6, табл. 4) приводит к увеличению общего расхода V_{Σ} на 2,3 % сверх максимального. Это приводит к небольшому росту производительности П, в основном за счет увеличения производительности реактора P1, но при этом увеличивается расходный коэффициент $G_{\rm M}$ по *агрегату* в целом. Перед реактором P2 реакционная смесь немного разбавляется до концентрации метанола $C_{\rm M}^0 = 8,35$ об.%, а более высокая линейная скорость газа приводит к снижению температуры $T_{\rm \Gamma.T.}$ в P2 на 10 °C. Поэтому возникает возможность регулирования T_W за счет 20-градусного запаса по максимальной температуре.

Рис. 12. Влияние температуры хладагента *Т_W* на температуру в «горячей точке» в реакторе Р2 *Т*_{Г.Т.} (Р2), расходный показатель *G*_M и мощность установки П при вариации нагрузки. Номера режимов – согласно табл. 4

Увеличение расхода метанола в Р2 ведет к увеличению концентрации $C_{\rm M}^0$ до 8,65 об.% (№ 7, табл.4), а общий расход смеси V_{Σ} увеличивается на 2,6 % по сравнению с максимальным. При этом производительность П заметно увеличивается (на 4,1 % сверх максимальной), а расходный коэффициент $G_{\rm M}$ сохраняется примерно на прежнем уровне. Несмотря на некоторый рост $T_{\Gamma,\rm T}$, остается запас около 7 °С по предельно допустимой температуре в «горячей точке» $T_{\Gamma,\rm T}$, что позволяет регулировать T_W .

Увеличение общего расхода смеси V_{Σ} на 4 % сверх максимального за счет увеличения расходов метанола в P1 и P2, воздуха и рецикловых газов позволяет на 3,3 % увеличить производительность агрегата (№ 8, табл. 4). Однако при этом заметно увеличивается скорость газа в трубках относительно базового варианта, а также увеличивается расходный коэффициент $G_{\rm M}$. Несмотря на одинаковое соотношение исходных потоков в базовом варианте и в варианте № 8, концентрация $C_{\rm M}^0$ на входе в реактор Р2 во втором случае меньше. Это объясняется более высокой конверсией и меньшим количеством остаточного метанола после реактора Р1. В результате снижения $C_{\rm M}^0$ на входе в Р2 и повышения U температура в «горячей точке» $T_{\Gamma, T.}$ реактора Р2 становится на 21 °C ниже допустимого значения, что позволяет в более широких пределах регулировать процесс с помощью *Т*_W.

Приведенные в табл. 4 результаты расчетов показывают, что увеличение производительности агрегата вследствие варьирования расхода реагентов определяется количеством метанола, подаваемого в систему «P1 + P2». Эта зависимость представлена на рис. 13 в виде диаграммы, где количество метанола выражено в относительных единицах с помощью зависимости

$$M_{\text{oTH}} = \frac{C_{\text{M1}}^{0} \cdot 10^{-2} \cdot V_{\text{P1}} + C_{\text{M2}}^{0} \cdot 10^{-2} \cdot V_{\text{P2}}}{V_{\Sigma}}$$

Концентрация метанола на входе в реактор Р2 может быть увеличена благодаря наличию запаса по максимальным температурам $T_{\Gamma T.}$ в трубках, однако из-за существующих ограничений по безопасности процесса такой путь повышения производительности будет связан с большими техническими трудностями.

Повышение T_W приводит к увеличению конверсии метанола, вследствие этого увеличивается производительность и снижается расходный коэффициент G_M , однако оно ограничено значением предельно допустимой температуры $T_{\Gamma.T.}$, равной 410 °С. В табл. 5 приведены результаты расчетов влияния увеличения T_W на увеличение П и уменьшение G_M в рассмотренных в табл. 4 вариантах расхода.

Рис. 13. Зависимость производительности П от количества метанола, поданного в *агрегат*. Условия режимов № 1, 6–8 – согласно табл. 4

Таблица 5 **Расчетные данные при 7_{Г.Т.} = 410 °С**

Nº	<i>Т_W,</i> °С	П, %	<i>G_M,</i> кг/т					
1	274	100,4	428,2					
4	280	100,7	426,8					
6	277	102,0	427,8					
7	274	104,6	428,3					
8	278	104,3	428,5					
Примечание. Условия режимов № 4 и № 1, 6–8 – согласно табл. 3 и табл. 4 соответственно.								

Варианты № 1 и 7 близки по значениям $T_{\Gamma.T.}$ и $G_{\rm M}$, как и варианты № 6 и 8. С учетом ограничений на $T_{\Gamma.T.}$ предельное значение T_W в вариантах № 1 и 7 составит ≈274 °С, а в вариантах № 6 и 8 ≈277 °С (см. рис. 12). Благодаря запасу по $T_{\Gamma.T.}$ примерно в 20 °С можно заметно уменьшить расходный коэффициент $G_{\rm M}$ при реализации вариантов № 6 и 8, как следует из данных, приведенных на рис. 12 и в табл. 5.

Наибольший прирост производительности, в размере 4,3—4,6 %, можно получить путем повышения T_W согласно вариантам № 7 ($V_{\Sigma} = 102,6$ %, табл. 5) и № 8 ($V_{\Sigma} = 104$ %, табл. 5) при приемлемом значении $G_M = 428,3 \div 428,5$ кг/т. Выбор варианта зависит от возможностей производства: в первом случае — небольшой запас по T_W , однако есть резерв мощности оборудования (№ 7, табл. 4 и 5). Во втором случае есть большой запас по управлению T_W , однако оборудование работает на максимуме (№ 8, табл. 4 и 5).

Возвращаясь к варианту с перераспределением подачи метанола без увеличения общей нагрузки (\mathbb{N} 4, табл. 3), отметим, что хотя перераспределение метанола и не приводит к заметному увеличению производительности реактора, но зато позволяет уменьшить расходный коэффициент $G_{\rm M}$. Иными словами, если необходимо уменьшить удельный расход метанола, то перераспределение подачи метанола между реакторами может оказаться полезным.

Заключение

Исследованы технологические особенности процесса окисления метанола в формальдегид на оксидном Fe-Mo катализаторе в агрегате, состоящем из двух последовательно соединенных трубчатых реакторов. Математическое описание процесса базируется на физически обоснованной модели трубчатого реактора и детальной кинетической модели с параметрами, адаптированными для промышленного катализатора.

Результаты расчетов селективности продуктов и конверсии метанола удовлетворительно, в пределах 5—7 %, согласуются с промышленными замерами. Расхождения в расчетах температур по длине и радиусу трубок могут быть вызваны неоднородностями распределения температур в трубчатом аппарате. Такие неоднородности являются следствием несовершенства конструкции аппарата и/или устройства ввода метанола и могут приводить к неоднородностям линейной скорости, температуры и концентрации реагентов по сечению реактора.

На примере трубчатого *реактора* с однослойной загрузкой неразбавленного катализатора количественно показано, что уменьшение линейной скорости потока вследствие снижения нагрузки ухудшает эффективную теплопроводность слоя, что приводит к увеличению перепадов температур по радиусу и длине трубки и вызывает рост максимальной температуры в слое катализатора.

Рассмотрены возможные технологические приемы повышения производительности *агрегата*, состоящего из двух последовательно соединенных трубчатых реакторов, с многослойной загрузкой катализатора. Такая задача возникает в связи с необходимостью увеличить производительность реактора либо достичь его проектной производительности при снижении активности катализатора. Результаты математического моделирования процесса окисления метанола в формальдегид показали, что:

а) увеличение температуры хладагента и перераспределение ввода метанола между реакторами без изменения общей нагрузки ведет лишь к незначительному, на 0,68 %, приросту проектной мощности агрегата, но позволяет уменьшить удельный расход метанола на 3 кг/т 37 %-ного формалина;

б) повышение проектной производительности агрегата на 3—5 % может быть достигнуто только при увеличении концентрации метанола в смеси за счет увеличения нагрузки. Увеличение нагрузки в сочетании с повышением температуры хладагента способствует повышению производительности при сохранении или уменьшении удельного потребления метанола.

в) для надежной работы агрегата при номинальных и повышенных нагрузках необходимо обеспечить условия однородного смешения и равномерного распределения потока в реакторах. Поскольку применение указанных технологических приемов предполагает работу оборудования в форсированных режимах, то обязательным условием является устранение пространственных неоднородностей реактора.

Авторы выражают благодарность сотрудникам Института катализа СО РАН канд. хим. наук Т.П. Минюковой за проведение сравнительных испытаний Fe-Mo катализаторов, канд. техн. наук О.П. Кленову за оценку условий равномерного течения потоков реакционной смеси методами CFD-моделирования и канд. техн. наук Н.В. Верниковской за подготовку пакета прикладных программ.

Литература

- 1. *Огородников С.К.* Формальдегид. Л.: Химия, 1984. 280 с.
- Накрохин Б.Г., Накрохин В.Б. Технология производства формалина из метанола. Новосибирск, 1995. 444 с.
- 3. Fellah M.F. // J. Catal. 282(1) (2011) p. 191.
- Patience G.S., Cenni R. // Chem. Eng. Sci. 62 (2007). P. 5609.
- 5. Diakov V., Varma A. // Chem. Eng. Sci. 58 (2003) p.801.
- Gryaznov V.M., Ermilova V.V., Orekhova N.V., Tereschenko G.F. Reactors with metal and metal-containing membranes. Structured catalysts and reactors. London, NY.: Taylor & Francis. (2005).
- 7. *Грязнов В.М.* // Мембраны. Сер. Критические технологии. 1999. № 3. С. 3.
- Терещенко Г.Ф., Орехова Н.В., Ермилова М.М. // Мембраны. Сер. Критические технологии. 2007. № 1 (33). С. 4.
- 9. Сеттерфилд Ч. Практический курс гетерогенного катализа. М.: Мир, 1984. 520с.
- 10. Payne W.A., Charleston W.Va. Pat. USA 2519788, 1950.
- 11. А.с. СССР 448705 Способ окисления метилового спирта. Опубл. БИ № 25 (1978). А.с. СССР 793983 Способ окисления метилового спирта. Опубл. БИ № 1 (1981).
- 12. U.S. Patent 5,959,154, (1999).
- 13. Informally speaking. The formaldehyde news letter from

Formox, Sweden: Perstorp, Formox AB. Spring/Summer (2010).

- Informally speaking. A formaldehyde magazine from Formox. Sweden: Perstorp, Formox AB. Autumn/Winter (2011).
- Бибин В.Н., Попов Б.И. // Кинетика и катализ. 1969.
 № 6. С. 1826.
- Бибин В.Н. Дисс. Институт катализа СО РАН, Новосибирск, 1976. 200 с.¹
- Soares A.P.V., Portela M.F., Kiennemann A. // Stud. Surf. Sci. Catal. 133 (2001) p. 489.
- 18. Tatibouët J.M. // Appl. Catal. A. 148 (1997) p. 213.
- 19. Cheng W.-H. // J. Catal. 158 (1996) p. 477.
- 20. Busca G.// Cat. Today 27 (1996) p. 457.
- 21. Кагырманова А.П., Золотарский И.А., Верниковская Н.В., Смирнов Е.И., Кузьмин В.А., Чумакова Н.А. // ТОХТ. 2006. № 40. С. 1.
- 22. *Кленов О.П., Носков А.С.* // Катализ в промышленности. 2011. № 4. С. 52.
- http://www.ehk.ru/products/cemical/coolants/hightemperature-organic-coolants/, http://www.dow.com/ (2013)
- Слинько М.Г. Основы и принципы математического моделирования каталитических процессов. Новосибирск: Ин-т катализа им. Г.К. Борескова СО РАН, 2004. 488с.
- Матрос Ю.Ш., Луговской В.И., Пужилова В.И., Накрохин В.Б. // Химическая промышленность. 1982. № 11. С. 674.

¹ Popov T.S., Popov B.I., Bibin V.N., Bliznakov G.M., Boreskov G.K. Catalytic properties of chromium-molybdenum oxide catalysts in methanol oxidation // Reaction Kinetics and Catalysis Letters. 1975. T. 3. № 2. C. 169–175.