- Biochemical Engineering// Biotechnology. 2007. Vol. 108. P. 95.
- 7. *Margeot A., Hahn-Hagerdal B., Edlund M., Slade R., Monot F.* New improvements for lignocellulosic ethanol // Curr. Opinion in Biotechnol. 2009. Vol. 20 (3). P. 372.
- 8. *Kubicek C.P., Mikus M., Schuster A., Schmoll M., Seiboth B.* Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina // Biotechnology for Biofuels. 2009. Vol. 2. P. 19.
- Skomarovsky A.A., Gusakov A.V., Okunev O.N., Solov'eva I.V., Bubnova T.V., Kondrat'eva E.G., Synitsyn A.P. Studies of hydrolytic activity of enzyme preparation of Penicillium and Trichoderma fungi // Appl. Biochem. Microbiol. 2005. Vol. 41. P. 182.
- 10. Martins L.F., Kolling D., Camassola M., Dillon A.J., Ra-

- mos L.P. Comparison of Penicillium echinulatum and reesei cellulases in relation to their activity against various cellulosic substrates // Bioresource Technology. 2008. Vol. 99. P. 1417.
- 11. *Gusakov A.V., Sinitsyn A.P.* Cellulases from Penicillium species for producing fuels from biomass // Biofuels. 2012. Vol. 3 (4). P. 463.
- Aleksenko A.Y., Makarova N.A., Nikolaev I.V. Integrative and replicative transformation of Penicillium canescens with a heterologous nitrate-reductase gene // Current Genetics. 1995. Vol. 28. P. 474.
- 13. *Синицын А.П., Черноглазов В.М., Гусаков А.В.* Методы исследования и свойства целлюлолитических ферментов. М.: ВИНИТИ, 1990. Т. 25. С. 154.
- 14. *Биссвангер X*. Практическая энзимология. М.: БИ-НОМ. Лаборатория знаний, 2010. С. 328.

УДК: 542.97

КИНЕТИКА ПРОЦЕССА ГИДРООБЛАГОРАЖИВАНИЯ ТРИГЛИЦЕРИДОВ ЖИРНЫХ КИСЛОТ РАПСОВОГО МАСЛА В МЯГКИХ УСЛОВИЯХ

© 2013 г. С.А. Селищева¹, М.Ю. Лебедев¹, С.И. Решетников¹, Л.И. Трусов², В.А. Яковлев¹

Введение

Липиды растительного происхождения, входящие в состав растительных масел, животных жиров, микроводорослей, в последнее время находят применение не только в пищевом секторе, но и в качестве сырья для получения биотоплива и полезных химических веществ.

Получение метиловых эфиров жирных кислот (МЭЖК), получивших название «биодизель», из триглицеридов жирных кислот известно с 1950 г. Самым распространенным способом является переэтерификация растительного, например рапсового, масла метанолом [1]. В качестве катализаторов переэтерификации до последнего времени использова-

ли гомогенные основания, в частности NaOH или KOH [2, 3], либо кислоты (H_2SO_4 , HCl, H_3PO_4) [4, 5], осуществляя процесс в мягких условиях ($50-80\,^{\circ}$ C). Помимо широко используемого в Европе рапсового масла сырьем для получения биодизеля служат соевое, подсолнечное, пальмовое масла, масло ятрофы, а также отработанные в пищевом секторе масла и жиры и отходы масложировой промышленности [6-8].

Получение биодизеля с применением гомогенных катализаторов имеет ряд недостатков, связанных с тем, что полученную смесь необходимо разделять, нейтрализовать, тщательно промывать и

¹ Институт катализа им. Г.К. Борескова СО РАН, г. Новосибирск

² Ассоциация делового сотрудничества в области передовых комплексных технологий 000 «АСПЕКТ»

обезвоживать. Кроме того, побочный продукт процесса — глицерин — загрязнен раствором солей и также требует дополнительной очистки.

Перечисленные недостатки гомогенного способа стимулировали поиск гетерогенных катализаторов кислотной [9, 10] и основной природы [11—13]. В работе [3] для получения МЭЖК (биодизеля) использовали катализатор, содержащий $Ca_{12}Al_{14}O_{33}$ и СаО. При этом выход МЭЖК составил 90 %; реакция протекала при 65 °C в течение 3 ч, молярное соотношение метанол : масло составляло 15 : 1. Более того, благодаря высокой стабильности катализатора, выход МЭЖК составил 87 % после семи циклов реакции.

Исходным сырьем для производства биодизеля могут служить не только растительные масла, но также микроводоросли (например, Chlorellafusca и Spirulinaplatensis), популярность которых в последнее время растет. Содержание липидов в микроводорослях, как правило, составляет около 80 %, а скорость их роста может достигать 7,3 г/л в сутки в пересчете на сухую массу [14]. Микроводоросли (а точнее, их липидная фракция, экстрагируемая из исходного сырья с использованием неполярных растворителей), как и растительные масла, подвергаются переэтерификации метанолом с образованием МЭЖК. Процесс проводят в присутствии как гомогенных, так и гетерогенных катализаторов [15-17]. Авторы [16] в качестве катализаторов использовали соляную кислоту или гидроксид натрия, варьируя концентрацию катализатора (0,12 N, 0,6 N) и температуру проведения реакции (20 и 70 °C). Было установлено, что в случае кислотного катализа выход продуктов переэтерификации выше, чем при основном. При этом максимальный выход эфиров наблюдался при концентрации кислоты 0,6 N и температуре 70 °C.

Селищева С.А. — аспирант, мл. науч. сотрудник Института катализа им. Г.К. Борескова СО РАН. Тел.: (383) 326-96-55. E-mail: svetlana@catalysis.ru.

Лебедев М.Ю. – мл. науч. сотрудник того же института. Тел. тот же. E-mail: lebedev@catalysis.ru.

Решетников С.И. — д-р хим. наук, рук. группы кинетики каталитических процессов того же института. Тел.: (383) 333-16-18. E-mail: reshet@catalysis.ru.

Трусов Л.И. — д-р техн. наук, проф., генеральный директор Ассоциации делового сотрудничества в области передовых комплексных технологий «АСПЕКТ». Тел.: (495) 434-80-91. E-mail: aspect@aspect.ru.

Яковлев В.А. — канд. хим. наук, зав. лабораторией каталитических процессов переработки возобновляемого сырья Института катализа им. Г.К. Борескова СО РАН. Тел.: (383) 330-62-54. E-mail: yakovlev@catalysis.ru Гетерогенные катализаторы в процессе переэтерификации липидной фракции микроводорослей использовали авторы [16]. При исследовании
зависимости каталитических свойств образцов CaO/Al_2O_3 и MgO/Al_2O_3 при 50 °C от соотношения
метанол: липиды и количества нанесенного на носитель катализатора было установлено, что массивные образцы CaO и MgO в отличие от нанесенных не
проявляют каталитической активности в изучаемой
реакции. Наиболее высокую активность показал
нанесенный катализатор $CaO-80\%/Al_2O_3$, причем
его активность возрастает с 23 до 97 % при изменении соотношения метанол: липиды от 6: 1 до 30: 1.

Следует отметить, что использование биодизеля (МЭЖК) имеет ряд ограничений: при смешении с традиционным дизельным топливом максимальное количество биодизеля ограничено 5—7 %, при этом исключается возможность длительного хранения. Одним из главных недостатков производства биодизеля является высокий уровень выбросов NO_x. В связи с этим в последнее время все большую популярность приобретает биотопливо второго поколения — гриндизель (green diesel, super cetane). Это биотопливо представляет собой бескислородную смесь изомеризованных алканов с высоким цетановым числом, которая может использоваться (в зависимости от состава продукта и его эксплуатационных характеристик) как добавка к традиционным дизельным топливам или в качестве компонента (до 50 об.%) топлива для реактивных двигателей.

Гриндизель получают путем гидрооблагораживания липидов растительного происхождения. В качестве сырья могут быть использованы растительные масла, свободные жирные кислоты, липиды микроводорослей. Переработка триглицеридов жирных кислот растительных масел в углеводороды топливного назначения включает две стадии. На первой стадии происходит гидрирование двойных (С = С) связей и гидрокрекинг триглицеридов, в результате чего образуется смесь линейных алканов ряда $C_{12}-C_{18}$. На второй стадии происходит изомеризация нормальных алканов с образованием смеси изо-алканов и гриндизеля, который в зависимости от условий осуществления процесса может использоваться как компонент дизельного топлива и в качестве авиационного керосина. Один из первых вариантов процесса получения жидких алканов C_{15} — C_{18} из растительного масла был запатентован в 1991 г. [17]. Для реализации первой стадии было предложено использовать промышленные сульфидные катализаторы (NiMo и CoMo), применяемые в гидроочистке/гидрокрекинге нефтяных дизельных фракций. Процесс проводят при 350-450 °C, давлении Н2 4,8—15,2 МПа, объемной скорости подачи сырья $0.5-5.0 \text{ ч}^{-1}$. Подобные сульфидированные каталитические системы использует в своем процессе NExBTL компания Neste Oil (Финляндия) [18]. Для второй стадии используют традиционные катализаторы изомеризации, например Pt/SiO₂-Al₂O₃, Pt/SAPO-31, PtHBEA [19-22], обладающие одновременно кислотными свойствами и способностью вести реакции гидрирования-дегидрирования. Биотопливо, получаемое в процессе NExBTL, характеризуется цетановым числом 84—99 п. и не содержит соединений кислорода, азота и ароматических углеводородов. В Порво (Финляндия) в 2007 г. введен в эксплуатацию первый завод, использующий процесс NExBTL мощностью 180 тыс. т в год. Позднее еще два подобных завода мощностью по 300 тыс. т в год появились в Роттердаме и Сингапуре.

Следует отметить, что из-за низкого содержания серы в исходном сырье сульфидированные катализаторы первой стадии процесса без добавления сульфидирующего компонента (H₂S, тиофен) быстро дезактивируются вследствие потери катализатором серы и восстановлением переходных металлов до металлического состояния. Поэтому для процесса гидрооблагораживания триглицеридов жирных кислот растительного происхождения является актуальной разработка несульфидированных катализаторов.

В работах [23, 24] показана возможность получения углеводородов топливного назначения из подсолнечного масла путем его гидрокрекинга на бифункциональном Pt/SAPO-31 катализаторе. Процесс проводился при $310-360\,^{\circ}C$, 2,0 МПа и скорости подачи исходного сырья $0,9-1,6\,^{\circ}4^{-1}$ в лабораторном проточном реакторе. Получена смесь углеводородов, состоящая главным образом из C_{17} и C_{18} , *н*-алканов и *изо*-алканов, с выходом до 89 мас.%. Однако катализатор Pt/SAPO-31 оказался нестабильным в процессе прямого гидрокрекинга растительного масла. Основными причинами чего, судя по всему, является присутствие воды и оксигенатов в реакционной среде, что и приводит к снижению изомеризующей способности данного катализатора.

Активность Ni-Cu/CeO₂-ZrO₂ катализатора в процессе гидродеоксигенации биодизеля при мяг-ких условиях (1,0 МПа $\rm H_2$, 360 °C) продемонстрирована в работах [25, 26]. С целью изучения основных

закономерностей процесса в присутствии Ni-Cu/ CeO₂-ZrO₂ катализатора проведена серия экспериментов по гидрооблагораживанию рапсового масла в мягких условиях [27].

Целями настоящей работы являлись: проведение кинетических исследований процесса гидрооблагораживания триглицеридов жирных кислот рапсового масла в присутствии Ni-Cu/CeO₂-ZrO₂ катализатора с получением смеси нормальных алканов и промежуточных кислородорганических соединений, разработка схемы протекания процесса и оценка кинетических параметров ее стадий.

Экспериментальная часть

Катализатор

Катализатор Ni-Cu/CeO₂-ZrO₂ приготавливали из смеси растворов азотнокислых никеля, меди, церия и циркония путем осаждения раствором гидроксида натрия по методике [29] с последующим гранулированием и термообработкой при 350 °C.

Текстурные характеристики катализатора определяли по результатам низкотемпературной адсорбции азота с использованием автоматизированной волюметрической адсорбционной установки ASAP-2400 (Micromeritics Instrument Corp., Norcross, GA, USA).

Исследование Ni-Cu/CeO₂-ZrO₂ катализатора методом электронной микроскопии высокого разрешения (ТЕМ) проводили с использованием просвечивающего электронного микроскопа ЈЕМ-2010 (JEOL, Japan). Согласно результатам электронной микроскопии катализатор Ni-Cu/CeO2-ZrO2 представляет собой бидисперсную систему: частицы CeO₂-ZrO₂ размером 3—5 нм с распределенными на них мелкими (около 2 нм) частицами Ni-Cu и крупные (до 300 нм) частицы NiO, не связанные с носителем. Значение удельной площади поверхности, полученное методом БЭТ, для данного катализатора составляет 141 м 2 /г, общий объем пор — 0,2 см 3 /г. По результатам элементного анализа, в составе катализатора (мас.%): Cu - 10,4, Ni - 30,3, Ce - 17,5, Zr - 28,0, O - 13,8.

Методика эксперимента

В качестве сырья в работе использовали рапсовое масло (Алтайский край), представляющее собой смесь триглицеридов жирных кислот, их содержание приведено в табл. 1.

Гидрооблагораживание проводили в проточном реакторе объемом 10 см³ и внутренним диаметром

Таблица 1 Состав рапсового масла

Жирнокислотный остаток	Брутто- формула	Число атомов С : : число двойных связей	Содер- жание, мас.%
Олеиновая кислота	C ₁₇ H ₃₃ C00H	18:1	63
Стеариновая кислота	C ₁₇ H ₃₅ C00H	18:0	6
Линолевая кислота	C ₁₇ H ₃₁ C00H	18:2	19
Линоленовая кислота	C ₁₇ H ₂₉ C00H	18:3	12
Эруковая кислота	C ₂₁ H ₄₁ C00H	22:1	< 1

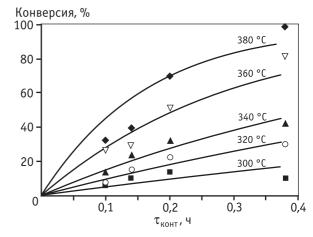
13 мм. Рапсовое масло подавали в реактор сверху через дозатор, обеспечивающий предварительный нагрев исходного вещества. Жидкие продукты накапливались в нижней части сепаратора и с требуемой периодичностью сливались через вентиль в отдельную емкость для дальнейшего хроматографического анализа на хроматографе «Хромос ГХ-1000».

В реактор загружали 5 см³ катализатора Ni-Cu/CeO₂-ZrO₂, разбавляя его кварцем в количестве 1,7 см³ (фракция катализатора и кварца — 0,5—1 мм). Перед началом каталитического процесса катализатор восстанавливали в токе водорода при 360 °C в течение 1 ч. Гидрооблагораживание проводили при следующих условиях: скорость подачи водорода — 250 мл/мин, аргона — 167 мл/мин, давление водорода — 1,0 МПа, температура — 300, 320, 340, 360 и 380 °C, времена контакта $\tau_{\text{конт}} = 0,38$; 0,20; 0,15; 0,10 ч (LHSV = 2,7; 5,1; 6,9; 9,8 ч⁻¹ соответственно). При каждом значении нагрузки LHSV измерения проводили при всех указанных значениях температуры. Отбор жидкой пробы на анализ осуществляли с периодичностью 1 ч.

Анализ продуктов

Жидкие продукты анализировали на хроматографе «Хромос ГХ-1000», оснащенном ПИД и капиллярной колонкой Zebron ZB-5 HT Inferno (30 м \times 0,32 мм, состав стационарной фазы: 5 % фенил, 95 % диметилполисилоксан, толщина неподвижной фазы — 0,25 мкм). Анализ газообразных продуктов (H_2 , CH_4) проводили на хроматографе «Хромос ГХ-1000» с детектором по теплопроводности (колонка длиной 4 м, фаза — Хромосорб-160). Дополнительно анализ

продуктов жидкой фазы проводили методом ЯМР на ядрах 1 H и 13 C, используя спектрометр Bruker Avance 400 на частотах 400,13 МГц (1 H) и 100,61 МГц (13 C).


Результаты и их обсуждение

Экспериментальное исследование влияния реакционных условий на конверсию триглицеридов жирных кислот рапсового масла и селективность продуктов процесса гидрооблагораживания

На рис. 1 представлена зависимость конверсии триглицеридов жирных кислот (ТГЖК) рапсового масла от времени контакта при разных температурах реакции. Следует отметить, что при повышении температуры от 300 до 380 °C конверсия увеличивается при каждом значении времени контакта, при этом полная конверсия ТГЖК достигается при 380 °C и времени контакта $\tau_{\text{конт}} = 0.38$ ч (LHSV = 2.7 ч $^{-1}$).

Анализ продуктов гидрооблагораживания рапсового масла, полученных с использованием катализатора Ni-Cu/CeO₂-ZrO₂, показал наличие следующих типов соединений: нормальные алканы (в основном, $C_{17}H_{36}$), 1,3- и 1,2- диглицериды, свободные жирные кислоты и другие кислородсодержащие соединения (метиловые эфиры жирных кислот, спирты, альдегиды, кетоны и воски.

Полный анализ продуктов гидрооблагораживания рапсового масла методом ГХ затруднителен изза большого числа продуктов и высокой температуры их кипения. Кроме того, метод ЯМР на ядрах

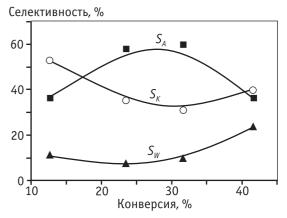
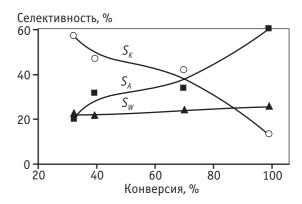


Рис. 1. Зависимость конверсии ТГЖК рапсового масла от времени контакта при разных температурах реакции (точки – эксперимент, линии – результаты моделирования, модель приведена ниже)


 1 Н и 13 С не позволяет корректно идентифицировать длину углеводородной цепи алкана или кислород-содержащих продуктов. В связи с этим представлялось целесообразным объединить получаемые продукты в три группы в зависимости от типа реакции, по которой они образуются, и от входящих в их состав функциональных групп. Так, в группу A входят нормальные алканы, в группу W— высокомолекулярные оксигенаты (кетоны и воски), а группа K включает в себя такие кислородсодержащие соединения, как диглицериды, свободные жирные кислоты, метиловые эфиры жирных кислот (МЭЖК), спирты, альдегиды и кетоны.

На рис. 2 представлены зависимости селективностей по группам продуктов гидрооблагораживания ТГЖК рапсового масла от конверсии при 340 °C. Данные зависимости являются типичными для диапазона температур 300-360 °C и показывают, что с увеличением конверсии (при увеличении времени контакта от 0,10 до 0,20 ч) селективность по группе продуктов A растет, по K — снижается, а селективность по группе продуктов W остается примерно постоянной. При увеличении времени контакта до 0,38 ч (этому соответствуют точки со значениями конверсии 40 %) селективность по продуктам групп K и W увеличивается относительно меньших значений времен контакта, а по группе A уменьшается. Это может быть связано с тем, что при данных условиях ($\tau_{\text{конт}} = 0.38 \text{ ч}, T = 300 \div 360 \text{ °C}$) образующиеся н-алканы (группа А) подвергаются гидрокрекингу с образованием более легких углеводородов, которые переходят в газовую фазу в виде метана.

При повышении температуры до 380 °C наблюдается иное распределение продуктов в области высоких значений конверсии (рис. 3). С увеличением конверсии при 380 °C селективность по целевым продуктам группы А увеличивается от 20 до 60 % при мало изменяющихся значениях селективности группы W (20—25 %). Селективность образования продуктов группы К при данных условиях уменьшается от 60 до 15 %. Это указывает на то, что продукты группы К являются промежуточными и в основной своей части превращаются в алканы (группа А). Следует отметить, что селективность образования группы высокомолекулярных продуктов (W) является достаточно высокой в сравнении со значениями (10-20 %), полученными при более низких температурах. Это может свидетельствовать о том, что продукты группы W (воски, кетоны) при изученных условиях являются конечными продук-

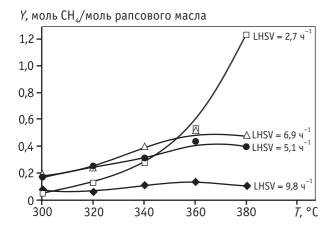

Рис. 2. Зависимость селективностей образования продуктов групп A, K и W от конверсии в реакции гидрооблагораживании ТГЖК рапсового масла при 340 °C (точки – эксперимент, линии – результат моделирования)

Рис. 3. Зависимость селективности образования продуктов групп A, K и W от конверсии в реакции гидрооблагораживания ТГЖК рапсового масла при 380 °C (точки – эксперимент, линии – результат моделирования)

тами гидрооблагораживания триглицеридов жирных кислот.

Одним из параметров, характеризующих степень протекания процесса гидрооблагораживания, является степень метанирования Y — отношение числа молей образовавшегося CH_4 к числу молей ТГЖК рапсового масла, введенного в реактор. Следует отметить, что высокие значения параметра Y нежелательны, так как это означает высокое нецелевое потребление водорода в текущем процессе и уменьшение выхода целевых продуктов. На рис. 4 представлена зависимость степени метанирования (Y) ТГЖК рапсового масла от температуры реакции при нагрузках на катализатор от 2,7 до 9,8 ч $^{-1}$. Следует отметить незначительный рост степени метанирования при увеличении температуры при низких временах контакта. При времени контакта

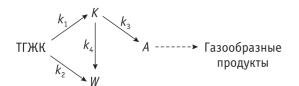


Рис. 4. Зависимость степени метанирования (Y) ТГЖК рапсового масла от температуры реакции при различных значениях LHSV

0,38 ч (LHSV = 2,7 ч⁻¹) при 380 °C значение Y резко возрастает, что подтверждает преимущественное превращение триглицеридов в алканы, поскольку образование метана напрямую связано с процессом гидродеоксигенации оксигенатов [26]. Судя по всему, низкое давление водорода (1,0 МПа) не способствует метанированию продуктов гидродеоксигенации. Достаточно высокие выходы восков и кетонов являются также следствием проведения гидрообработки рапсового масла при низком давлении H_2 . Повышение давления водорода до 8,0 МПа позволяет количественно превращать триглицериды в H-алканы с неизбежным образованием CH_4 в количестве Y > 3 [28].

Оценки скоростей стадий процесса гидрооблагораживания ТГЖК рапсового масла в мягких условиях на основе математического моделирования

На основании полученных данных по распределению продуктов и зависимостей селективностей по группам продуктов от конверсии ТГЖК была предложена следующая кинетическая схема процесса гидрооблагораживания ТГЖК рапсового масла (рис. 5).

Рис. 5. Кинетическая схема процесса гидрооблагораживания ТГЖК рапсового масла при $P_{\rm H_2} = 1,0$ МПа

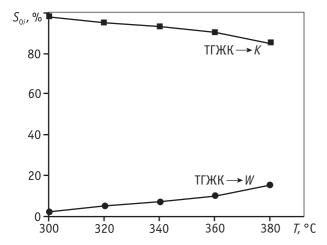
Предлагаемая кинетическая схема подразумевает параллельное превращение исходных триглицеридов жирных кислот как в высокомолекулярные соединения (W) типа восков и кетонов, так и в другие кислородсодержащие продукты с более низкой молекулярной массой (К) типа свободных жирных кислот, спиртов, альдегидов. Далее по схеме продукты группы K могут превращаться либо в кетоны или воски (W) через реакции декарбоксилирования и этерификации соответственно либо в H-алканы (A) посредством гидродеоксигенации. Следует также учитывать процесс гидрокрекинга алканов, который приводит к образованию более легких алканов и метана. При этом отмечена тенденция постепенного уменьшения числа атомов углерода в алканах при увеличения температуры процесса, что указывает на разрыв концевой С—С связи [25].

Поскольку реакция протекает при достаточно больших конверсиях исходного реагента, то для оценки кинетических констант была принята простейшая модель зависимости изменения концентрации реагентов от времени:

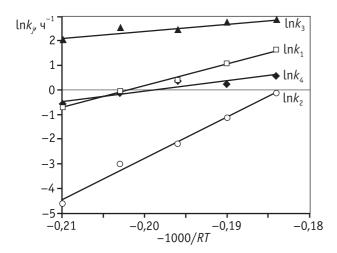
де
$$\frac{dC_i}{dt} = R_i,$$
 $R_i = \sum_j r_j,$ $r_j = k_j C_j$

с граничными условиями: t=0, $C_i=C_i^0$, где r_j — скорость j-й реакции, 1/ч, R_i — скорость расходования j-го компонента, 1/ч, C_j — мольная доля j-го вещества, t — время, ч.

Исходя из зависимости конверсии ТГЖК рапсового масла от времени контакта при разных температурах реакции (см. рис. 1) были построены графики зависимости начальной селективности образования продуктов K и W от температуры (рис. 6). Из них следует, что селективность образования продуктов группы K гораздо выше, чем группы W. Однако с повышением температуры от 300 до 380 °C процесс несколько смещается в сторону образования высокомолекулярных продуктов.


По приведенной выше модели зависимости изменения концентрации реагентов от времени были рассчитаны константы скоростей стадий схемы (см. рис. 5); значения констант приведены в табл. 2.

На основании полученных значений констант реакций был построен график в аррениусовских координатах (рис. 7), который позволяет определить


Таблица 2

Значения констант скоростей стадий схемы гидрооблагораживания ТГЖК рапсового масла

T, °C	k ₁ , ч ⁻¹	k ₂ , ч ⁻¹	k ₃ , ч ^{−1}	k ₄ , ч ^{−1}
300	0,49	0,01	7,55	0,55
320	0,95	0,05	12,10	0,90
340	1,49	0,11	11,20	1,50
360	2,97	0,33	15,00	1,30
380	5,10	0,90	17,00	1,80

Рис. 6. Зависимости начальной селективности образования продуктов (K и W) от температуры

Рис. 7. Зависимость констант скоростей от обратной температуры

значения предэкспоненциальных множителей и энергий активаций. Рассчитанные значения кинетических параметров представлены в табл. 3.

На рис. 1, 2, 3 и 8 для сравнения приведены экспериментальные и расчетные данные. На рис. 1

Таблица 3
Значения кинетических параметров процесса гидрооблагораживания ТГЖК рапсового масла в мягких* условиях

Параметр	<i>k</i> ₁	k ₂	k ₃	k ₄		
k _{0i} , ч ⁻¹	6,9·10 ⁷	2,3·10 ¹³	$3,1 \cdot 10^3$	4,9·10 ³		
<i>E</i> _a , кДж∕моль	89,4	167,6	28,3	42,7		
* Условия процесса: $P_{\rm H_2}$ = 1,0 МПа, T = 300÷380 °C, LHSV = 2,7÷9,8 ч $^{-1}$.						

Рис. 8. Зависимость селективности образования продуктов гидрооблагораживания ТГЖК рапсового масла от конверсии при 300 °C. Точки – эксперимент, линии – результат моделирования

представлены расчетные кривые конверсии триглицеридов с учетом суммы констант k_1 и k_2 . В целом наблюдается корректное описание полученных экспериментальных данных предложенной кинетической моделью. Приведенные на рис. 8 экспериментальные и расчетные зависимости селективности образования продуктов гидрооблагораживания рапсового масла от его конверсии в целом также подтверждают корректность выбранной схемы.

Таким образом, получена количественная оценка основных маршрутов гидрооблагораживания ТГЖК, которая может быть использована для определения распределения продуктов при других температурах и временах контакта.

Выводы

1. Продукты гидрооблагораживании ТГЖК рапсового масла, полученные при невысоких давлениях

водорода (1,0 МПа) с использованием катализатора Ni-Cu/CeO₂-ZrO₂, представляют собой смесь μ -алканов, свободных жирных кислот и их метиловых эфиров, диглицеридов, спиртов, альдегидов, а также высокомолекулярных восков и кетонов.

- 2. На основании результатов кинетических экспериментов с вариацией температуры реакции, времени контакта предложена кинетическая схема, учитывающая состав основных типов продуктов, включая *н*-алканы, свободные жирные кислоты и продукты их парциального восстановления, а также высокомолекулярные продукты: воски и кетоны.
- 3. Определены значения констант скоростей и энергии активации основных стадий реакции, что позволяет прогнозировать состав продуктов для других условий проведения процесса.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках выполнения государственных контрактов № 16.526.11.6003 Федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007—2012 годы».

Литература

- Wang B., Li S., Tian S., Feng R., Meng Y. // Fuel. 2013.
 Vol. 104, P. 700.
- 2. Murugesan A., Umarani C., Chinnusamy T., Krishnan M., Subramanian R., Neduzchezhain N. // Renewable and Sustainable Energy Rev. 2009. Vol. 13. P. 825.
- 3. Vicente G., Martinez M., Aracil J. // Bioresourse Technology. 2004. Vol. 92. P. 297.
- 4. Zheng S., Kates M., Dube M., McLean D. // Biomass Bioenergy. 2006. Vol. 30. P. 267.
- 5. Ишбаева А.У., Талипова Л.А., Шахмаев Р.Н., Вершинин С.С., Спирихин Л.В., Зорин В.В. // Башкирский химический журнал. 2009. Т. 16. № 2. С. 36.
- 6. *Talebian-Kiakalaieh A., Amin N., Mazaheri H.* // Applied Energy. 2013. Vol. 104. P. 685.
- Demirbas A. // Energy Conversion and Management. 2009.
 Vol. 50. P. 923.
- Omar W., Amin N. // Fuel Processing Technology. 2011.
 Vol. 92. P. 2399.
- Toda M., Takagaki A., Okamura M., Kondo J., Hayashi S., Domen K., Hara M. // Nature (London). 2005. Vol. 438. P. 178.

- 10. *Macleod C., Harvey A., Lee A., Wilson K.* // Chemical Engineering Journal. 2008. Vol. 135. P. 63.
- 11. Serio M., Ledda M., Cozzolino M., Tesser R., Santacesaria E. // Indian Engineering Chemical Resource. 2006. Vol. 405. P. 3009.
- 12. Serio M., Tesser R., Pengmei L., Santacesaria E. // Energy Fuels. 2008. Vol. 22. P. 207.
- Verziu M., Cojocaru B., Hu J., Richards R., Ciuculescu C., Filip P., Parvulescu V. // Green Chemistry. 2008. Vol. 10. P. 373.
- 14. *Suali E., Sarbatly R.* // Renewable and Sustainable Energy Reviews. 2012. Vol. 16. P. 4316.
- 15. *Miao X.* // Bioresource Technology. 2006. Vol. 97. P. 841.
- Nagle N., Lemke P. // Appl. Biochem. Boitechnol. 1990.
 Vol. 24, P. 355.
- 17. *Craig W., Soveran D.* Production of hydrocarbons with a relatively high cetane rating: pat. US № 4992605, 1991.
- 18. *Сноре М., Мяки-Арвела П., Симакова И.Л., Мюл-люойа Ю., Мурзин Д.Ю.* // Сверхкритические флюиды: Теория и практика. 2009. Т. 4. № 1. С. 3.
- Soualah A., Lemberton J.L., Pinard L., Chater M., Magnoux P., Moljord K. // Applied Catalysis. A: General. 2008.
 Vol. 336. P. 27.
- 20. *Calemma V., Peratello S., Perego C.* // Applied Catalysis. A: General. 2000. Vol. 190. P. 211.
- 21. *Walendziewski J., Pniak B., Malinowska B.* // Chemical engineering journal. 2003. Vol. 95. P.113.
- 22. Katikaneni S.P.R., Adjaye J.D., Idem R.O., Bakhshi N.N. // Ind. Eng. Chem. Res. 1996. Vol. 35. P. 3332.
- 23. *Kikhtyanin O., Rubanov A., Ayupov A., Echevsky G.* // Fuel. 2010. Vol. 89. P. 3085.
- Kikhtyanin O., Vostrikova L., Urzhuntsev G., Toktarev A., Tselyutina M., Reznichenko I., Echevsky G. // Zeolites and Related Materials: Trends, Targets and Challenges. 2008. P. 1227.
- Yakovlev V.A., Khromova S.A., Sherstyuk O.V., Dundich V.O., Ermakov D.Yu., Novopashina V.M., Lebedev M.Yu., Bulavchenko O., Parmon V.N. // Catalysis Today. 2009. Vol. 144. P. 362.
- 26. *Дундич В.О., Яковлев В.А.* // Химия в интересах устойчивого развития. 2009. №. 17. С. 527.
- 27. *Селищева С.А., Бабушкин Д.Э., Яковлев В.А.* // Химия в интересах устойчивого развития. 2011. № 2. С. 187.
- 28. *Яковлев В.А., Хромова С.А., Бухтияров В.И.* // Успехи химии. 2011. Т. 80. № 10. С. 955.