## Катализ в нефтеперерабатывающей промышленности

- 3. *Буянов Р.А., Чесноков В.В., Афанасьев А.Д. //* Кинетика и катализ. 1979. Т. 20. В. 1. С. 207.
- 4. *Буянов Р.А., Чесноков В.В., Афанасьев А.Д.* // Изв. СО АН СССР. 1981. № 9. Сер. хим. наук. В. 4. С. 28.
- 5. *Буянов Р.А., Чесноков В.В.* // Журн. прикладной химии. 1997. Т. 70. В. 6. С. 978.
- Чесноков В.В., Буянов Р.А. // Успехи химии. 2000. № 7. С. 675.
- 7. *Буянов Р.А.* // Химия в интересах устойчивого развития. 2000. № 8. С. 347.
- 8. *Буянов Р.А., Чесноков В.В.* // Катализ в промышленности. 2006. № 2. С. 3.
- 9. Зайковский В.И., Чесноков В.В., Буянов Р.А. // Кинетика и катализ. 2006. Т. 47. № 2. С. 620.
- 10. Parmon V.N. // Catal. Lett. 1996. Vol. 42. P. 195.

- 11. *Городецкий А.Е., Евко Э.Н., Захаров А.П.* // Физика твердого тела. 1976. Т. 18. № 2. С. 619.
- Молчанов В.В., Чесноков В.В., Буянов Р.А., Зайцева Н.А. // Кинетика и катализ. 1998. Т. 39. № 3. С. 407.
- Молчанов В.В., Чесноков В.В., Буянов Р.А., Зайцева Н.А., Зайковский В.И., Плясова Л.М., Бухтияров В.И., Просвирина М.П., Новгородов Б.Н. // Кинетика и катализ. 1998. Т. 39. № 3. С. 416.
- Молчанов В.В., Чесноков В.В., Буянов Р.А., Зайцева Н.А., Зайковский В.И. // Кинетика и катализ. 2005. Т. 46. № 5. С. 701.
- Зайцева Н.А., Гойдин В.В., Молчанов В.В., Чесноков В.В., Буянов Р.А., Уткин В.А. // Кинетика и катализ. 2011. Т. 52. № 5. С. 787.

# УДК 542.973 : 547.532 : : 66.095.21.097

# ГИДРОИЗОМЕРИЗАЦИЯ БЕНЗОЛСОДЕРЖАЩИХ БЕНЗИНОВЫХ ФРАКЦИЙ НА КАТАЛИЗАТОРЕ Pt/SO<sub>4</sub><sup>2–</sup>–ZrO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>. ПРЕВРАЩЕНИЯ МОДЕЛЬНОГО И РЕАЛЬНОГО СЫРЬЯ

© 2013 г. М.О. Казаков, А.В. Лавренов, В.К. Дуплякин Институт проблем переработки углеводородов СО РАН, г. Омск

# Введение

В связи с ужесточением экологических требований существует необходимость развития технологий, позволяющих получать бензиновые топлива с пониженным содержанием бензола в своем составе. При производстве товарных бензинов основным источником ароматических углеводородов, в том числе бензола, являются продукты процесса каталитичес-

Казаков М.О. – канд. хим. наук, мл. науч. сотрудник Института проблем переработки углеводородов СО РАН. Тел.: (3812) 67-03-14. E-mail: kazakov@ihcp.ru

Лавренов А.В. – канд. хим. наук, зам. директора по научной работе того же института. Тел.: (3812) 67-33-32. E-mail: lavr@ihcp.ru

**Дуплякин В.К.** – д-р хим. наук, гл. науч. сотрудник того же института. Тел.: (3812) 67-33-32. E-mail: dvk@ihcp.oscsbras.ru ного состава сырья и условий проведения процесса содержание бензола в риформинг-бензине может достигать 8 мас.%. Учитывая, что для отечественных нефтеперерабатывающих предприятий риформинг-бензин наряду с бензином крекинга является основным высокооктановым компонентом, получение экологически чистых топлив, содержащих не более 1 об.% бензола, путем компаундирования становится невозможным.

кого риформинга. Так, в зависимости от фракцион-

Одним из способов удаления бензола может быть процесс гидроизомеризации бензолсодержащих фракций, в том числе легкой фракции риформингбензина, в основном состоящих из углеводородов  $C_5-C_7$  и включающих до 30 мас.% бензола [1—3]. В ходе этого процесса бензол удаляется за счет гидрирования, а компенсация потерь октанового числа жидких продуктов может быть достигнута за счет изомеризации образующегося циклогексана (ЦГ) в метилциклопентан (МЦП). Для эффективного проведения процессов гидроизомеризации бензолсодержащих бензиновых фракций необходим бифункциональный катализатор, одновременно имеющий как развитые гидрирующие свойства для превращения аренов в циклоалканы, так и кислотные свойства для изомеризации циклоалканов и алканов.

Ранее нами было показано [4—6], что введение оксида алюминия путем добавления гидроксида алюминия к сульфатированному гидрату диоксида циркония может являться эффективным способом регулирования кислотных и гидрирующих свойств катализатора гидроизомеризации на основе системы  $Pt/SO_4^{2-}$ — $ZrO_2$ — $Al_2O_3$ . С ростом содержания оксида алюминия в системе  $Pt/SO_4^{2-}$ — $ZrO_2$ — $Al_2O_3$  снижается ее кислотность, что приводит к увеличению селективности реакций изомеризации гептана и циклогексана. При этом одновременно возрастает активность данной системы в реакции гидрирования бензола, что связано с увеличением доли платины, находящейся на поверхности катализатора в металлическом состоянии.

В данной работе с целью выбора оптимального содержания оксида алюминия проведено исследование каталитических свойств системы  $Pt/SO_4^{2-}$ —  $ZrO_2$ — $Al_2O_3$  с различным химическим составом в гидроизомеризации модельного и реального бензол-содержащего сырья. В качестве модельного сырья использовалась смесь гептан — бензол, а в качестве реального применялась фракция бензина каталитического риформинга с пределами выкипания н.к.—85 °С промышленного происхождения.

### Экспериментальная часть

Гидрат диоксида циркония получали осаждением его из раствора оксинитрата циркония под действием раствора аммиака (конечное значение pH осаждения равно 10). Полученный осадок промывали дистиллированной водой и обрабатывали 16 %-ным раствором серной кислоты, взятом в количестве, которое обеспечивает массовое соотношение  $ZrO_2: H_2SO_4 = 9: 1$ . Сульфатированный гидрат диоксида циркония смешивали с гидроксидом алюминия (псевдобемит) промышленного производства (ЗАО «Промышленные катализаторы», г. Рязань). Смеси сушили при 120 °С. Для получения готовых носителей их прокаливали в муфельной печи при 650 °С (образцы серии SZA-х, где х — фактическое содержание Al<sub>2</sub>O<sub>3</sub>, мас.%). Для сравнения аналогично были получены образцы сульфатированного диоксида циркония (SZ) и оксида алюминия (А). Готовые формы бифункциональных катализаторов (образцы Pt/SZA-x, Pt/SZ и Pt/А) получали пропиткой носителей раствором H<sub>2</sub>PtCl<sub>6</sub> из расчета достижения 0,3 мас.% платины в конечном образце с последующей сушкой при 120 °С и прокаливанием при 400 °С в токе воздуха. Методики определения химического состава образцов катализаторов, а также их физико-химические характеристики были описаны ранее [4-6].

Исследование каталитических свойств образцов проводили в проточном реакторе с неподвижным слоем катализатора. Перед началом экспериментов образцы активировали в токе водорода при 300 °C в течение 4 ч.

Гидроизомеризацию модельной смеси гептан — бензол (43,9 мас.% гептана и 56,1 мас.% бензола) проводили при давлении 1,5 МПа, массовой скорости подачи жидкого сырья (МСПС) 8,0 ч<sup>-1</sup>, мольном соотношении водород : сырье, равном 8, и температурах 200—300 °C.

Гидроизомеризацию бензолсодержащей бензиновой фракции промышленного происхождения (фракция н.к.–85 °С бензина риформинга) проводили при давлении 1,5 МПа, МСПС 1,0—6,0 ч<sup>-1</sup>, мольном соотношении водород : сырье, равном 5, и температурах 220—300 °С. Состав фракции представлен в табл. 1. Содержание бензола в сырьевой смеси — на

# Таблица 1 Состав бензолсодержащей фракции

бензина риформинга

| -                              |                    |      |     |     |      |        |  |  |
|--------------------------------|--------------------|------|-----|-----|------|--------|--|--|
| Группа                         | Содержание, мас.%  |      |     |     |      |        |  |  |
| углеводо-<br>родов             | н-алканы Изоалканы |      | АЦП | АЦГ | АУ   | Алкены |  |  |
| C <sub>3</sub> -C <sub>4</sub> | 1,6                | 1,2  | -   | -   | -    | 0,0    |  |  |
| C <sub>5</sub>                 | 1,9                | 3,5  | 0,0 | -   | -    | 0,1    |  |  |
| C <sub>6</sub>                 | 14,2               | 29,0 | 6,2 | 1,2 | 23,7 | 0,6    |  |  |
| C <sub>7</sub>                 | 2,0                | 9,6  | 1,2 | 0,3 | 3,5  | 0,1    |  |  |
| C <sub>8</sub>                 | 0,0                | 0,1  | 0,0 | 0,0 | 0,0  | 0,0    |  |  |
| Всего                          | 19,7               | 43,4 | 7,4 | 1,5 | 27,2 | 0,8    |  |  |

уровне 23,7 мас.%. При этом его доля составляла не менее 87 % от общего количества ароматических углеводородов (АУ). Основными компонентамилегкой фракции бензина риформинга являлись алкановые углеводороды, общее содержание которых составляло 63,1 мас.% при массовом соотношении изоалканы: *н*-алканы для углеводородов  $C_5-C_8$ , близком к 2,3. Максимальная массовая доля приходилась на алканы  $C_6$  (43,2 %), а суммарное содержание алкилциклопентанов (АЦП) и алкилциклогексанов (АЦГ) ограничивалось 8,9 мас.%. Также в составе сырья в небольших количествах присутствовали алкены и растворенные углеводородные газы  $C_3-C_4$ .

Составы продуктов гидроизомеризации анализировали в режиме онлайн с использованием газового хроматографа Хромос ГХ-1000, снабженного капиллярной колонкой (длина 100 м, фаза DB-1) и пламенно-ионизационным детектором. Для каждой температуры процесса гидроизомеризации производился двукратный отбор проб и результаты анализов усреднялись. При расчете показателей гидроизомеризации оценивали количество водорода, поглотившегося в процессе. Использованные для расчета степени превращения исходных углеводородов, выходов и селективностей образования продуктов реакции формулы приведены в [5].

С использованием данных газохроматографического анализа и данных об октановых числах индивидуальных углеводородов [7] по аддитивной схеме рассчитывались значения исследовательского октанового числа (ИОЧ) жидких продуктов гидроизомеризации.

# Результаты и их обсуждение

С целью выбора оптимального содержания оксида алюминия в носителе системы  $Pt/SO_4^{2-}-ZrO_2-Al_2O_3$  использовалась реакция гидроизомеризации модельной смеси гептан — бензол. Данные о химическом составе исследованных образцов катализаторов приведены в табл. 2. Сульфатированный диоксид циркония (Pt/SZ) и оксид алюминия (Pt/A) с нанесенной на их поверхность платиной использовали в качестве образцов сравнения.

Для реакции изомеризации циклогексана в метилциклопентан, являющейся основой для компенсации потерь октанового числа жидких продуктов гидроизомеризации, возникающих из-за превращения бензола в циклогексан, более благоприятна высокотемпературная область, так как с ростом

| Таблица 2      |            |                |
|----------------|------------|----------------|
| Химический сос | тав исслед | уемых образцов |

| Образец <sup>*</sup>                                                                                              | Хими<br>нос                   | Содержание |                                |             |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|--------------------------------|-------------|--|--|--|
|                                                                                                                   | $S0_4^{2-}$ $Zr0_2$ $Al_20_3$ |            | Al <sub>2</sub> 0 <sub>3</sub> | rt, Mat. 70 |  |  |  |
| Pt/SZ                                                                                                             | 4,5                           | 95,5       | 0,0                            | 0,32        |  |  |  |
| Pt/SZA-18,8                                                                                                       | 6,1                           | 75,1       | 18,8                           | 0,30        |  |  |  |
| Pt/SZA-28,1                                                                                                       | 6,2                           | 65,7       | 28,1                           | 0,30        |  |  |  |
| Pt/SZA-47,8                                                                                                       | 4,4                           | 47,8       | 47,8                           | 0,28        |  |  |  |
| Pt/SZA-67,8                                                                                                       | 3,1                           | 29,1       | 67,8                           | 0,29        |  |  |  |
| Pt/A                                                                                                              | 0,0                           | 0,0        | 100,0                          | 0,30        |  |  |  |
| <sup>*</sup> Цифры в обозначениях образцов соответствуют фактическому содержанию Al <sub>2</sub> O <sub>3</sub> . |                               |            |                                |             |  |  |  |

температуры увеличивается термодинамическая стабильность МЦП по сравнению с ЦГ [8]. С другой стороны, температуры выше 300 °С могут негативным образом сказываться на глубине протекания реакции гидрирования бензола. С учетом этого гидроизомеризацию бензолсодержащего сырья целесообразно вести в температурном диапазоне от 200 до 300 °C. В этом диапазоне может быть обеспечено полное гидрирование бензола, а также возможно достижение высокого соотношения МЦП : ЦГ в продуктах гидроизомеризации.

Изучение влияния температуры гидроизомеризации модельной смеси гептан—бензол показало, что в интервале 200—300 °С практически на всех образцах обеспечивается близкая к полной степень превращения бензола (рис. 1). Исключение составляет лишь образец Pt/SZ, для которого при повышении температуры реакции от 200 до 300 °С наблюдается снижение степени превращения бензола до 67,9 %.

Ранее [6] для Pt/SZ и образцов Pt/SO<sub>4</sub><sup>2–</sup>—ZrO<sub>2</sub>— Al<sub>2</sub>O<sub>3</sub> с содержанием оксида алюминия до 47,8 мас.% включительно была отмечена низкая активность в гидрировании чистого бензола при температуре 200 °C и атмосферном давлении (степень превращения бензола не более 6,1 %). Повышение парциального давления водорода до 1,2 МПа позволяет достигать полного гидрирования бензола как за счет установления более благоприятных термодинамических условий, так и, по-видимому, кинетических. Последнее может быть связано с десорбцией соединений серы, которые образовались в ходе восстановительной обработки катализаторов, с поверхности частиц нанесенной Pt. В результате этого может про-



**Рис. 1.** Влияние содержания оксида алюминия в носителе на степень превращения (*X*, %) бензола (*a*) и гептана (*б*) при температурах, °C: 200 (*1*), 250 (*2*) и 300 (*3*) в гидроизомеризации модельной смеси

исходить увеличение числа металлических центров, участвующих в реакции гидрирования.

Более сложной выглядит зависимость степени превращения гептана от температуры на катализаторах с различным содержанием оксида алюминия. При температуре 200 °С наибольшую активность в превращении гептана проявляет образец Pt/SZ. Для образцов системы  $Pt/SO_4^{2-}$ — $ZrO_2$ — $Al_2O_3$  увеличение содержания  $Al_2O_3$  приводит к резкому уменьшению степени превращения гептана вплоть до нулевого уровня, что объясняется снижением их кислотности [5].

При 250 °C образцы Pt/SZ, Pt/SZA-18,8 и Pt/SZA-28,1 обеспечивают близкую степень превращения гептана, которая находится в пределах от 87 до 92 %. Значительно более низкую активность в этом случае имеют образцы, содержащие 47,8 мас.% оксида алюминия и более.

Повышение температуры реакции до 300 °С негативным образом сказывается на активности образца Pt/SZ в превращении гептана. Это может быть связано с неполным гидрированием бензола, наблюдающимся при этой температуре. Бензол, будучи органическим основанием, блокирует кислотные центры катализатора и препятствует превращению гептана. При температуре 300 °С максимальная активность превращения гептана достигается на образцах  $Pt/SO_4^{2-}$ — $ZrO_2$ — $Al_2O_3$ , содержащих от 18,8 до 47,8 мас.% оксида алюминия. Повышение содержания  $Al_2O_3$  до 67,8 мас.% ведет практически к двукратному снижению степени превращения гептана. Алюмоплатиновый катализатор (Pt/A) при температурах 200—300 °С не проявляет заметной активности в превращении гептана.

Выходы продуктов гидроизомеризации смеси гептан—бензол, по которым можно судить об эффективности протекания реакций изомеризации, представлены в табл. 3. Суммарный выход углеводородов  $C_1-C_4$  и  $C_5+$  более 100 мас.% связан с поглощением водорода, которое происходит в ходе процесса за счет реакций гидрирования, гидрогенолиза и гидрокрекинга. Из полученных данных видно, что образцы, содержащие до 47,8 мас.% оксида алю-

#### Таблица 3

# Показатели гидроизомеризации модельной смеси гептан-бензол

| 06222011*                                                                                                   | <i>t,</i> °C | Выход, мас.% |                 |                                |                            |      |      |  |
|-------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------------|--------------------------------|----------------------------|------|------|--|
| ооразец                                                                                                     |              | $C_1 - C_4$  | C <sub>5+</sub> | C <sub>5</sub> -C <sub>6</sub> | <i>изо-</i> С <sub>7</sub> | мцп  | ЦГ   |  |
|                                                                                                             | 200          | 38,5         | 67,0            | 7,3                            | 10,2                       | 28,0 | 10,4 |  |
| Pt/SZ                                                                                                       | 250          | 49,5         | 56,3            | 11,1                           | 4,1                        | 24,0 | 6,8  |  |
|                                                                                                             | 300          | 22,2         | 81,4            | 3,2                            | 5,6                        | 21,6 | 7,3  |  |
|                                                                                                             | 200          | 23,8         | 81,2            | 4,4                            | 13,8                       | 31,7 | 14,3 |  |
| Pt/SZA-18,8                                                                                                 | 250          | 44,3         | 61,4            | 13,0                           | 3,8                        | 28,0 | 8,8  |  |
|                                                                                                             | 300          | 45,0         | 60,5            | 8,1                            | 4,3                        | 27,6 | 7,7  |  |
|                                                                                                             | 200          | 17,7         | 87,1            | 2,8                            | 15,3                       | 35,8 | 17,4 |  |
| Pt/SZA-28,1                                                                                                 | 250          | 27,7         | 77,5            | 11,2                           | 9,4                        | 34,6 | 12,1 |  |
|                                                                                                             | 300          | 41,4         | 64,1            | 12,4                           | 5,4                        | 31,3 | 8,4  |  |
|                                                                                                             | 200          | 8,1          | 96,5            | 1,1                            | 11,8                       | 28,1 | 23,7 |  |
| Pt/SZA-47,8                                                                                                 | 250          | 32,7         | 72,6            | 4,1                            | 10,1                       | 34,1 | 12,4 |  |
|                                                                                                             | 300          | 43,7         | 61,9            | 6,9                            | 6,6                        | 32,7 | 8,3  |  |
|                                                                                                             | 200          | 0,1          | 104,4           | 0,1                            | 5,0                        | 9,5  | 45,0 |  |
| Pt/SZA-67,8                                                                                                 | 250          | 1,0          | 103,5           | 0,1                            | 11,5                       | 17,8 | 35,4 |  |
|                                                                                                             | 300          | 3,8          | 100,6           | 0,3                            | 21,3                       | 31,3 | 20,7 |  |
|                                                                                                             | 200          | 0,0          | 104,1           | 0,0                            | 0,1                        | 0,0  | 54,5 |  |
| Pt/A                                                                                                        | 250          | 0,1          | 104,0           | 0,2                            | 0,2                        | 0,3  | 54,4 |  |
|                                                                                                             | 300          | 0,7          | 103,4           | 0,9                            | 0,8                        | 1,2  | 52,5 |  |
| * Цифры в обозначениях образцов соответствуют фак-<br>тическому содержанию Al <sub>2</sub> O <sub>2</sub> . |              |              |                 |                                |                            |      |      |  |

миния, имеют избыточную кислотность для гидроизомеризации. Это выражается в интенсивном протекании реакций гидрокрекинга. Так, уже при температуре 200 °C выход жидких углеводородов на образце Pt/SZ не превышает 67,0 мас.%, что неприемлемо с практической точки зрения. Повышение содержания оксида алюминия до 47,8 мас.% ведет к закономерному увеличению выхода углеводородов  $C_{5^+}$ , однако и в этом случае он остается неудовлетворительным.

Повышение температуры реакции до 250—300 °C для образца Pt/SZ и образцов Pt/SZA с содержанием оксида алюминия от 18,8 до 47,8 мас.% ведет к ин-

Таблица 4

тенсификации побочных реакций гидрокрекинга, что в свою очередь приводит к снижению выхода жидких углеводородов. Следует отметить, что на катализаторе Pt/SZ при температуре 300 °C выход углеводородных газов меньше, чем при температурах 200—250 °C. Как рассматривалось выше, это может быть связано с неполным гидрированием бензола.

Целевая реакция изомеризации циклогексана, образующегося в результате гидрирования бензола, на образце Pt/SZ и образцах серии SZA с содержанием Al<sub>2</sub>O<sub>3</sub> до 47,8 мас.% протекает с низкой селективностью. Максимальная селективность образования циклоалканов С<sub>6</sub> при температуре 250 °С не превышает 83,3 %, а при 300 °С составляет 73,5 %. Во всех случаях для этих катализаторов содержание метилциклопентана превышает содержание циклогексана. Соотношение МЦП : ЦГ на образце Pt/SZ при 200 °С достигает 2,7. При увеличении содержания оксида алюминия до 47,8 мас.% это соотношение уменьшается до 1,2. При 300 °С соотношение МЦП : ЦГ увеличивается до 3,0-4,0. Однако высокие значения этого показателя достигаются при значительных потерях в выходе суммы циклоалканов С<sub>6</sub> за счет раскрытия циклов.

В случае гидроизомеризации бензолсодержащих бензиновых фракций помимо достижения максимального выхода метилциклопентана необходимо минимизировать превращение циклогексана по другим направлениям. Связано это с тем, что разрыв связи С—С в молекуле циклогексана будет приводить к образованию *н*-гексана, который имеет низкое октановое число.

Более селективно гидроизомеризация смеси гептан—бензол протекает на образце Pt/SZA-67,8. Оптимальной для этого катализатора можно считать температуру 300 °С. При данной температуре обеспечивается выход жидких продуктов гидроизомериза-

| Показатели гидроизомеризации бензолсодержащей | фракции |
|-----------------------------------------------|---------|
| бензина риформинга                            |         |

| мспс,           | + °C | Выход*,                        | , мас.%          | Содержание в С <sub>5</sub> +, мас.% |           |      |      |     |      |
|-----------------|------|--------------------------------|------------------|--------------------------------------|-----------|------|------|-----|------|
| ч <sup>-1</sup> | ι, ι | C <sub>1</sub> -C <sub>4</sub> | C <sub>5</sub> + | <i>н</i> -алканы                     | Изоалканы | ΑЦΠ  | ΑЦΓ  | АУ  | ИОЧ  |
| 1,0             | 220  | 0,6                            | 101,5            | 16,9                                 | 45,5      | 17,8 | 19,8 | 0,0 | 74,2 |
|                 | 240  | 1,5                            | 100,7            | 15,0                                 | 47,6      | 24,0 | 13,3 | 0,0 | 76,7 |
|                 | 260  | 3,5                            | 98,7             | 13,4                                 | 49,8      | 26,3 | 10,4 | 0,0 | 78,4 |
|                 | 280  | 7,0                            | 95,4             | 13,2                                 | 51,5      | 26,3 | 9,0  | 0,0 | 79,4 |
|                 | 300  | 11,4                           | 91,2             | 13,6                                 | 52,5      | 25,9 | 7,9  | 0,0 | 79,9 |
|                 | 220  | 0,4                            | 101,8            | 18,1                                 | 44,5      | 12,4 | 25,0 | 0,0 | 72,4 |
|                 | 240  | 0,5                            | 101,6            | 17,1                                 | 45,4      | 17,9 | 19,6 | 0,0 | 74,0 |
| 2,0             | 260  | 1,3                            | 100,9            | 15,7                                 | 47,3      | 23,4 | 13,6 | 0,0 | 76,0 |
|                 | 280  | 3,1                            | 99,1             | 14,5                                 | 49,4      | 26,1 | 10,0 | 0,0 | 77,6 |
|                 | 300  | 6,3                            | 96,1             | 13,9                                 | 50,0      | 27,6 | 8,5  | 0,0 | 78,9 |
|                 | 220  | 0,3                            | 101,9            | 18,2                                 | 44,1      | 11,6 | 26,1 | 0,0 | 72,2 |
|                 | 240  | 0,6                            | 101,6            | 17,2                                 | 45,2      | 17,5 | 20,0 | 0,0 | 73,9 |
| 3,0             | 260  | 1,2                            | 100,9            | 15,9                                 | 46,9      | 23,2 | 13,9 | 0,0 | 75,9 |
|                 | 280  | 2,8                            | 99,4             | 14,8                                 | 48,4      | 26,6 | 10,3 | 0,0 | 77,4 |
|                 | 300  | 4,9                            | 97,4             | 14,3                                 | 48,1      | 28,7 | 8,9  | 0,0 | 78,4 |
| 6,0             | 220  | 0,2                            | 101,9            | 18,5                                 | 43,9      | 10,3 | 27,4 | 0,0 | 71,7 |
|                 | 240  | 0,3                            | 101,8            | 18,0                                 | 44,5      | 14,1 | 23,4 | 0,0 | 72,7 |
|                 | 260  | 0,6                            | 101,5            | 17,1                                 | 45,5      | 19,6 | 17,7 | 0,0 | 74,3 |
|                 | 280  | 1,5                            | 100,8            | 16,1                                 | 47,2      | 24,6 | 12,2 | 0,0 | 76,0 |
|                 | 300  | 3,0                            | 99,3             | 15,2                                 | 48,6      | 27,2 | 9,0  | 0,0 | 77,3 |

Примечание. МСПС- массовая скорость подачи сырья, АЦП – алкилциклопентаны, АЦГ – алкилциклогексаны, АУ – ароматические углеводороды, ИОЧ – октановое число по исследовательскому методу. \* Выход рассчитан на поданное жидкое сырье.



Рис. 2. Температурная зависимость степени превращения (X, %) бензола (1) и гексана (2), массового соотношения (R) МЦП : ЦГ (3) и изоалканы : *н*-алканы (4) для катализатора Pt/SZA-67,8 при значениях МСПС (ч<sup>-1</sup>): 1,0 (*a*), 2,0 (*б*), 3,0 (*в*) и 6,0 (*г*) в гидроизомеризации бензолсодержащего сырья

ции на уровне, близком к 100 мас.%, а также достигается максимальный выход изогептанов и высокий выход метилциклопентана. При этом селективность образования изогептанов из *н*-гептана близка к 100 %, а общая селективность образования циклоалканов  $C_6$  из бензола — на уровне 96,3 %. Основной реакцией, протекающей на катализаторе Pt/A, является реакция гидрирования бензола до циклогексана при минимальном вкладе реакций изомеризации и крекинга.

Образец Pt/SZA-67,8 был использован для гидроизомеризации бензолсодержащего сырья промышленного происхождения (фракция н.к.-85 °C бензина каталитического риформинга). Результаты экспериментов представлены на рис. 2 и в табл. 4. Согласно полученным данным, на катализаторе Pt/SZA-67,8 при всех исследованных условиях процесса обеспечивается полное превращение ароматических углеводородов, как бензола, так и присутствующего в сырье толуола.

В качестве показателей, позволяющих оценить глубину изомеризации циклогексана и *н*-алканов, использовались массовые соотношения МЦП : ЦГ и изоалканы : *н*-алканы для углеводородов C<sub>5</sub>+.

Протекание изомеризации *н*-алканов наблюдается начиная с температуры 220 °С. Однако в этом случае прирост соотношения изоалканы : *н*-алканы для жидких продуктов по сравнению с сырьем составляет от 0,1 (при МСПС 6 ч<sup>-1</sup>) до 0,4 единиц (при МСПС 1 ч<sup>-1</sup>). Максимального значения (3,9) данный показатель достигает при температуре 300 °С и МСПС 1 ч<sup>-1</sup>.

Глубина изомеризации циклогексана также возрастает при повышении температуры реакции. При 220 °С массовое соотношение МЦП : ЦГ находится в пределах от 0,4 (при 6 ч<sup>-1</sup>) до 0,9 (при 1 ч<sup>-1</sup>). Увеличение температуры до 300 °С при МСПС, равной 1 ч<sup>-1</sup>, ведет к увеличению соотношение МЦП : ЦГ в 4,3 раза, а при МСПС, равной 2—6 ч<sup>-1</sup>, в этом случае наблюдается 8—10-кратное увеличение данного показателя.

Выходы продуктов гидроизомеризации, их состав и данные об ИОЧ жидких продуктов (углеводороды  $C_{5^+}$ ) приведены в табл. 4. Состав углеводородных газов представлен пропаном и бутанами. Метан и этан практически не образуются в ходе реакции. Максимальный выход данных компонентов наблюдается при 300 °С и МСПС 1 ч<sup>-1</sup> и не превышает 0,3 мас.%. Жидкие продукты гидроизомеризации представлены алкановыми и циклоалкановыми углеводородами. Соотношение между алканами и циклоалканами при МСПС, равной  $2-6 \, \text{ч}^{-1}$ , практически не зависит от температуры и составляет 1,7—1,8. Лишь при МСПС, равной  $1 \, \text{ч}^{-1}$ , с ростом температуры наблюдается заметное увеличение доли алканов в жидких продуктах (соотношение алканы : циклоалканы увеличивается с 1,7 до 2,0), что связано с интенсификацией протекания реакций раскрытия циклов.

Содержание МЦП и ЦГ в сумме циклоалкановых углеводородов не зависит от условий реакции и составляет около 86 мас.%, что очень близко к доле бензола в аренах, входящих в состав легкой фракции бензина риформинга. Остальная часть приходится преимущественно на циклоалканы  $C_7$ с массовым соотношением между алкилциклопентановыми углеводородами и метилциклогексаном от 0,5—0,7 при 220 °С до 1,3 при 300 °С. Следует отметить, что изомеризация метилциклогексана в алкилциклопентановые углеводороды также может обеспечивать увеличение ИОЧ продуктов гидроизомеризации.

В зависимости от условий процесса гидроизомеризации возможно получение жидких продуктов с ИОЧ, равным или превышающим ИОЧ сырья, которое составляет 75,1 (см. табл. 4). Температура реакции, необходимая для того, чтобы компенсировать уменьшение ИОЧ, вызванное гидрированием бензола, зависит от МСПС и возрастает от 240 °С при 1 ч<sup>-1</sup> до 280 °С при 6 ч<sup>-1</sup>. При этом выход жидких продуктов гидроизомеризации находится на уровне, близком к 100 %. Варьированием условий можно добиваться увеличения ИОЧ продуктов гидроизомеризации на 2,2-3,3 пункта по сравнению с исходным сырьем. При этом в продуктах полностью отсутствуют ароматические углеводороды. Более значительное увеличение ИОЧ влечет за собой потери в выходе углеводородов С<sub>5+</sub>, так как оно достигается за счет гидрокрекинга алканов С7 и увеличения в результате этого доли алканов С<sub>4</sub>-С<sub>6</sub> в составе продуктов гидроизомеризации.

#### Заключение

В результате проведенных исследований показано, что изменение содержания оксида алюминия является эффективным способом влияния на каталитические свойства системы  $Pt/SO_4^{2-}$  –  $ZrO_2$  –  $Al_2O_3$ в процессе гидроизомеризации бензолсодержащих бензиновых фракций. При этом оптимальными каталитическими свойствами обладает система, носитель которой содержит 67,8 мас.% оксида алюминия. Для бензолсодержащей фракции промышленного происхождения установлено, что данный катализатор при температурах 260—300 °С дает возможность полного удаления аренов с сохранением высокого выхода жидких продуктов — на уровне 98,7 мас.% и более при увеличении октанового числа на 2,2-3,3 пункта по исследовательскому методу по сравнению с исходным сырьем.

Авторы выражают благодарность кандидату химических наук О.Б. Бельской за помощь в приготовлении образцов катализаторов и Т.В. Киреевой за выполнение химического анализа их состава.

## Литература

- 1. Miyaji A., Okuhara T. // Catal. Today. 2003. Vol. 81. P. 43.
- Benitez V.M., Grau J.M., Yori J.C., Pieck C.L., Vera C.R. // Energy Fuels. 2006. Vol. 20. P. 1791.
- Tsai K.-Y., Wang I., Tsai T.-C. // Catal. Today. 2011. Vol. 166. P. 73.
- 4. Казаков М.О., Лавренов А.В., Михайлова М.С., Аллерт Н.А., Гуляева Т.И., Муромцев И.В., Дроздов В.А., Дуплякин В.К. // Кинетика и катализ. 2010. Т. 51. № 3. С. 457.
- Казаков М.О., Лавренов А.В., Данилова И.Г., Бельская О.Б., Дуплякин В.К. // Кинетика и катализ. 2011. Т. 52. № 4. С. 583.
- 6. Казаков М.О., Лавренов А.В., Бельская О.Б., Данилова И.Г., Арбузов А.Б., Гуляева Т.И., Дроздов В.А., Дуплякин В.К. // Кинетика и катализ. 2012. Т. 53. № 1. С. 104.
- 7. Смоленский Е.А., Рыжов А.Н., Бавыкин В.М., Мышенкова Т.Н., Лапидус А.Л. // Известия Академии наук. Сер. Химическая. 2007. № 9. С. 1619.
- Жоров Ю.М. Термодинамика химических процессов. М.: Химия, 1985. 464 с.