Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Nickel-containing catalysts for ethylene conversion to motor fuel components and light alkenes

https://doi.org/10.18412/1816-0387-2024-2-26-33

Abstract

Polyfunctional Ni-containing catalysts supported on the B2O3-Al2O3 and MoO3-Al2O3 were prepared by a sequential impregnation. They were evaluated in ethylene conversion to C5+ alkenes or propylene. The catalysts were characterized by X-ray diffraction, Fourier transformed infrared spectroscopy, Fourier transformed infrared spectroscopy of adsorbed CO, UV-VIS diffuse reflectance spectroscopy, temperature programmed reduction and temperature-programmed desorption of NH3. NiO/B2O3-Al2O3 samples containing Ni2+ cations chemically bonded to the acid support are the most effective catalysts for ethylene oligomerization. The NiO/MoO3-Al2O3 catalyst activity in the ethylene conversion to propylene is related with the presence of ethylene dimerization active sites, i.e. Ni2+ cations bonded to the support acidic sites, and active sites of metathesis in the form of monomolybdate species.

About the Authors

T. R. Karpova
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


A. V. Lavrenov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


M. A. Moiseenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


E. A. Buluchevskii
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


T. I. Gulyaeva
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


A. B. Arbuzov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Global Ethylene Market 2022-2026. https://www.researchandmarkets.com/reports/5557920/global-ethylene-market-2022-2026#product--toc

2. Волкова А.В. Рынок базовых продуктов нефтехимии: олефины и ароматические углеводороды. М.: Высшая школа экономики, 2019. 70 с.

3. Ghashghaee M. // Rev. Chem. Eng. 2018. V. 34. P. 595-655. https://doi.org/10.1515/revce-2017-0003

4. Bao J., Yang G., Yoneyama Y., Tsubaki N. // ACS Catal. 2019. V. 9. № 4. P. 3026-3053. https://doi.org/10.1021/acscatal.8b03924

5. Третьяков В.Ф., Илолов А.М., Будняк А.Д., Французова Н.А., Рагуткин А.В., Латышков А.А., Никоноров С.И. // НефтеГазоХимия. 2017. № 3. С. 35-40.

6. Sanfilippo D., Miracca I., Di Girolamo M., in Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities, Eds Derouane E.G., Parmon V., Lemos F., Ribeiro F.R., Springer, Dordrecht, 2005, P. 217-247. https://doi.org/10.1007/1-4020-3310-9_11

7. Седов И.В., Макарян И.А., Берзигияров П.К., Магомедова М.В., Максимов А.Л. // Журнал прикладной химии. 2018. Т. 91. С. 1693-1707.

8. Speight J.G. Handbook of Industrial Hydrocarbon Processes. Gulf Professional Publishing, 2020. p. 55. https://doi.org/10.1016/C2015-0-06314-6

9. Mohsenzadeh A., Zamani A., Taherzadeh M.J. // ChemBioEng Rev. 2017. V. 4. № 2. P. 75-91. https://doi.org/ 10.1002/cben.201600025

10. Bosch C.E., Poulston S., Collier P., Thybaut J.W., Marin G.B. // Johnson Matthey Technol. Rev. 2019. V. 63. № 4. P. 265-276. https://doi.org/10.1595/205651319X15613828987406

11. Gattis S.C., Peterson E.R., Johnson M.M. // Synfuels International Inc. 2004.

12. Geleynse S., Brandt K., Garcia-Perez M., Wolcott M., Zhang X. // ChemSusChem. 2018. V. 11. № 21. P. 3728-3741. https://doi.org/10.1002/cssc.201801690

13. Lallemand M., Finiels A., Fajula F., Hulea V. // Chem. Eng. J. 2011. V. 172. № 2-3. P. 1078-1082. https://doi.org/10.1016/j.cej.2011.06.064

14. Lu K., Jin F., Wu G., Ding Y. // Sustain. Energy Fuels. 2019. V. 3. № 12. P. 3569-3581. https://doi.org/10.1039/c9se00771g

15. Xui T., Wang J., Liu Q. // Microporous Mesoporous Mater. 2011. V. 143. № 2-3. P. 362-367. https://doi.org/10.1016/j.micromeso.2011.03.014

16. Peil K.P., Galva L.G., Marcelin G. // J. Catal. 1989. V. 115. № 2. P. 441-451. https://doi.org/10.1016/0021-9517(89)90048-1

17. Лавренов А.В., Дуплякин В.К. // Кинетика и катализ. 2009. Т. 50. № 2. С. 249-255.

18. Bautista E.M., Campelo J.M., Garcia A. // Appl. Catal. A Gen. 1998. V. 170. № 1. P. 159-168. https://doi.org/10.1016/S0926-860X(98)00046-5

19. Curtin T., McMonagle J.B., Ruwet M., Hodnett B.K. // J. Catal. 1993. V. 142. № 1. P. 172-181. https://doi.org/10.1016/0926-860X(92)80295-N

20. Lombardo E.A., Lo Jacono M., Hall W.K. // J. Catal. 1980. V. 64. № 1. P. 150-162. https://doi.org/10.1016/0021-9517(80)90488-1

21. Khodakov Y.S., Anders K., Makarov P.A., Feldhaus R., Novak Z., Minachev K.M. // Bulletin of the Academy of Sciences of the USSR, Division of chemical science. 1983. V. 32. P. 1132-1135.

22. Карпова Т.Р., Булучевский Е.А., Лавренов А.В., Леонтьева Н.Н., Тренихин М.В., Гуляева Т.И., Талзи В.П. // Химия в интересах устойчивого развития. 2013. Т. 21. С. 61-68.

23. Лавренов А.В., Булучевский Е.А., Моисеенко М.А., Дроздов В.А., Арбузов А.Б., Гуляева Т.И., Лихолобов В.А., Дуплякин В.К. // Кинетика и катализ. 2010. Т. 51. № 3. С. 423-428.

24. Karpova T., Buluchevskiy E., Lavrenov A., Moiseenko M., Trenikhin M., Arbuzov A., Gulyaeva T., Savelyeva G., Muromtsev I. // Mol. Catal. 2021. V. 499. P. 111316. https://doi.org/ 10.1016/j.mcat.2020.111316

25. Petre A.L., Perdigon-Melon J.A., Gervasini A., Aurouxa A. // Top. Catal. 2002. V.19. № 3-4. Р. 271-281. https://doi.org/10.1023/a:1015384711680

26. Flego C., O’Neil Parker Jr. W. // Appl. Catal. A Gen. 1999. V. 185. № 1. P. 137-152. https://doi.org/10.1016/S0926-860X(99)00137-4

27. Davydov A.A., Kantcheva M., Chepotko M.L. // Catal. Lett. 2002. Vol. 83. № 1-2. P. 97-108. https://doi.org/10.1023/A:1020669818242

28. Давыдов А.А. ИК-спектроскопия в химии поверхности окислов. Новосибирск: Наука, 1984. 246 с.

29. Воробьев В.Н., Агзамходжаева Д.Р., Микита В.П., Абидова М.Ф. // Кинетика и катализ. 1984. Т. 25. № 1. С. 190-194.

30. Priecel P., Kubička D., Čapek L., Bastl Z., Ryšánek P. // Appl. Catal. A Gen. 2011. V. 397. № 1-2. P. 127–137. https://doi.org/10.1016/j.apcata.2011.02.022

31. Yoon J.S., Park M.B., Kim Y., Chae H.-J. // Catalysts. 2019. V. 9. № 11. P. 933. https://doi.org/10.3390/catal9110933

32. Tian H., Roberts C.A., Wachs I.E. // J. Phys. Chem. C. 2010. V. 114. № 33. P. 14110-14120. https://doi.org/10.1021/jp103269w

33. Huang S., Liu H., Zhang L., Liu S., Xin W., Li X., Xie S., Xu L. // Appl. Catal. A Gen. 2011. V. 404. № 1-2. P. 113-119. https://doi.org/10.1016/j.apcata.2011.07.020

34. Morales-Ortuño J.C., Klimova T.E. // Fuel. 2017. V. 198. P. 99-109. https://doi.org/10.1016/j.fuel.2017.01.007

35. Nikolova D., Edreva-Kardjieva R., Giurginca M., Meghea A., Vakros J., Voyiatzis G.A., Kordulis C. // Vib. Spectrosc. 2007. V. 44. № 2. P. 343-350. https://doi.org/10.1016/j.vibspec.2007.03.002

36. Zhang X., Tang W., Zhang Q., Wang T., Ma L. // Energy Procedia. 2017. V. 105. P. 518-523. https://doi.org/10.1016/j.egypro.2017.03.350

37. Jing Z.-y., Zhang T.-q., Shang J.-w., Zhai M.-l., Yang H., Qiao C.-z., Ma X.-q. // J. Fuel Chem. Technol. 2018. V. 46. № 4. P. 427-440. https://doi.org/ 10.1016/S1872-5813(18)30018-5

38. Rajagopal S., Marini H.J., Marzari J.A., Miranda R. // J. Catal. 1994. V. 147. № 2. P. 417-428. https://doi.org/10.1006/jcat.1994.1159.

39. Domínguez-Crespo M.A., Arce-Estrada E.M., Torres-Huerta A.M., Díaz-García L., Cortez de la Paz M.T. // Mater. Charact. 2007. V. 58. № 10. P. 864-873. https://doi.org/10.1016/j.matchar.2006.08.013.

40. Ferdous D., Dalai A.K., Adjaye J. // Appl. Catal. A Gen. 2004. V. 260. № 2. P 137-151. https://doi.org/10.1016/j.apcata.2003.10.010


Review

For citations:


Karpova T.R., Lavrenov A.V., Moiseenko M.A., Buluchevskii E.A., Gulyaeva T.I., Arbuzov A.B. Nickel-containing catalysts for ethylene conversion to motor fuel components and light alkenes. Kataliz v promyshlennosti. 2024;24(2):26-33. (In Russ.) https://doi.org/10.18412/1816-0387-2024-2-26-33

Views: 279


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)