Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Study of the influence of the gas circulation ratio on the production of C5–C18 alkenes in the Fischer–Tropsch synthesis

https://doi.org/10.18412/1816-0387-2024-2-34-42

Abstract

The process of producing C5+ hydrocarbons, including unsaturated ones, on a zeolite-containing catalyst Сo-Al2O3 /SiO2 /ZSM-5/Al2O3 in flow and flow-circulation modes of operation at a temperature of 250 °C, a pressure of 2.0 MPa, GHSV 1000 h–1 has been studied , H2 /CO ratio = 1.70 in the source gas and circulation ratios of 4, 8 and 16. It was determined that the process indicators (selectivity and productivity for C5+ products) pass through a maximum at a circulation ratio of 8. The use of gas circulation in comparison with flow synthesis mode allows you to regulate the composition of products. An increase in the circulation ratio in the range of 4–16 leads to an increase in the proportion of formed olefins with a hydrocarbon chain length containing 5–20 carbon atoms, from 53.9 wt.% up to 65.7 wt.%. The use of a zeolite-containing catalyst intensifies the formation of C8–C12 alkenes in comparison with the Co-Al2O3 /SiO2 catalyst by 3,3 times – the content increases from 13,5 wt.% up to 44.2 wt.% at similar values of circulation ratio, pressure and H2 /CO ratio = 1.70 in the source gas. It was found that as the circulation ratio increases, the rate of deactivation of the zeolite-containing catalyst decreases, which may be caused by a decrease in the partial pressure of water in the reaction volume.

About the Authors

I. N. Zubkov
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


O. D. Denisov
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


M. A. Timokhina
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


A. P. Savost'yanov
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


R. E. Yakovenko
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


References

1. Голубь Ф.С., Болотов В.А., Пармон В.Н. // Катализ в промышленности. 2020. Т. 20. № 6. С. 433-455. DOI: 10.18412/1816-0387-2020-6-433-455

2. Голубь Ф.С., Болотов В.А., Пармон В.Н. // Катализ в промышленности. 2020. Т. 20. № 6. С. 456-472. DOI: 10.18412/1816-0387-2020-6-456-472

3. Blay V., Louis B., Miravalles R., Yokoi T., Peccatiello K.A., Clough M., Yilmaz B. // ACS Catalysis. 2017. V. 7. № 10. Р. 6542-6566. DOI: 10.1021/acscatal.7b02011

4. Alsudani F.T., Saeed A.N., Ali N.S., Majdi H.S., Salih H.G., Albayati T.M., Cata Saady N.M., Shakor Z.M. // Methane. 2023. V. 2. № 1. Р. 24-43. DOI: 10.3390/methane2010002

5. Kim K.J., Kim K.Y., Rhim G.B., Youn M.H., Lee Y.L., Chun D.H., Roh H. // Chemical Engineering Journal. 2023. V. 468. Р. 143632. DOI: 10.1016/j.cej.2023.143632

6. Sineva L., Mordkovich V., Asalieva E., Smirnova V. // Reactions. 2023. V. 4. № 3. Р. 359-380. DOI: 10.3390/reactions4030022

7. Gholami Z., Gholami F., Tišler Z., Hubáček J., Tomas M., Bačiak M., Vakili M. // Catalysts. 2022. V. 12. № 2. Р. 174. DOI: 10.3390/catal12020174

8. An Y., Lin T., Yu F., Yang Y., Zhong L., Wu M., Sun Y. // Science China Chemistry. 2017. V. 60. Р. 887-903. DOI: 10.1007/s11426-016-0464-1

9. Ma Z., Ma H., Zhang H., Wu X., Qian W., Sun Q., Ying W. // ACS omega. 2021. V. 6. № 7. Р. 4968-4976. DOI: 10.1021/acsomega.0c06008

10. Jeske K., Kizilkaya A. C., López-Luque I., Pfänder N., Bartsch M., Concepción P., Prieto G. // ACS catalysis. 2021. V. 11. № 8. Р. 4784-4798. DOI: 10.1021/acscatal.0c05027

11. Gogate M. R. // Petroleum Science and Technology. 2019. V. 37. № 5. Р. 559-565. DOI: 10.1080/10916466.2018.1555589

12. Ye M., Tian P., Liu Z. // Engineering. 2021. V. 7. № 1. Р. 17-21. DOI: 10.1016/j.eng.2020.12.001

13. Shiba N. C., Liu X., Yao Y. // Fuel Processing Technology. 2022. V. 238. Р. 107489. DOI: 10.1016/j.fuproc.2022.107489

14. Gao Y., Shao L., Yang S., Hu J., Zhao S., Dang J., Wang W., Yan X., Yang P. // Catalysis Communications. 2023. V. 181. Р. 106720. DOI: 10.1016/j.catcom.2023.106720

15. Pan X., Jiao F., Miao D., Bao X. // Chemical Reviews. 2021. V. 121. № 11. Р. 6588-6609. DOI: 10.1021/acs.chemrev.0c01012

16. Wang S., Wang P., Shi D., He S., Zhang L., Yan W., Qin Z., Li J., Dong M., Wang J., Olsbye U., Fan W. // ACS Catalysis. 2020. V. 10. № 3. Р. 2046-2059. DOI: 10.1021/acscatal.9b04629

17. Jiao F., Bai B., Li G., Pan X., Ye Y., Qu S., Xu C., Xiao J., Jia Z., Liu W., Peng T., Ding Y., Liu C., Li J., Bao X. // Science. 2023. V. 380. № 6646. Р. 727-730. DOI: 10.1126/science.adg2491

18. Yakovenko R.E., Savost'yanov A.P., Narochniy G.B., Soromotin V.N., Zubkov I.N., Papeta O.P., Svetogorov R.D., Mitchenko S.A. // Catalysis Science & Technology. 2020. V. 10. № 22. Р. 7613-7629. DOI: 10.1039/D0CY00975J

19. Яковенко Р.Е., Бакун В.Г., Зубков И.Н., Папета О.П., Салиев А.Н., Савостьянов А.П. Катализ в промышленности. 2023. Т. 23. № 2. С. 15-25. DOI: 10.18412/1816-0387-2023-2-15-25

20. Yakovenko R.E., Zubkov, I.N., Bakun V.G., Papeta O.P., Savostyanov A.P. // Petroleum Chemistry. 2022. V. 62. № 1. Р. 101-111. DOI: 10.1134/S0965544122010157

21. Zubkov I.N., Savost’yanov A.P., Soromotin V.N., Denisov O.D., Demchenko S.S., Yakovenko R.E. // Russian Journal of Applied Chemistry. 2022. – V. 95. № 12. Р. 1776-1789. DOI: 10.1134/S1070427222120047

22. Нарочный Г.Б., Яковенко Р.Е., Савостьянов А.П., Бакун В.Г. // Катализ в промышленности. 2016. № 1. С. 37-42. DOI: 10.18412/1816-0387-2016-1-37-42

23. Шавалеев Д.А., Травкина О.С., Алехина И.Е., Эрштейн А.С., Басимова Р.А., Павлов М.Л. // Вестник Башкирского университета. 2015. Т. 20. № 1. С. 58-65. DOI: -

24. Teimouri Z., Abatzoglou N., Dalai A.K. // Catalysts. 2021. V. 11. № 3. Р. 330. DOI: 10.3390/catal11030330

25. Rahmati M., Safdari M.S., Fletcher T.H., Argyle M.D., Bartholomew C.H. // Chemical reviews. 2020. V. 120. № 10. Р. 4455-4533. DOI: 10.1021/acs.chemrev.9b00417

26. Saib A.M., Moodley D.J., Ciobîcă I.M., Hauman M.M., Sigwebela B.H., Weststrate C.J., Niemantsverdriet J.W., Van de Loosdrecht J. // Catalysis Today. 2010. V. 154. № 3-4. Р. 271-282. DOI: 10.1016/j.cattod.2010.02.008

27. Яковенко Р.Е., Зубков И.Н., Нарочный Г.Б., Савостьянов А.П. // Катализ в промышленности. 2019. Т. 19. № 6. С. 430-435. DOI: 10.18412/1816-0387-2019-6-430-435

28. Petersen A.P., Claeys M., Kooyman P.J., van Steen E. // Catalysts. 2019. V. 9. № 10. Р. 794. DOI: 10.3390/catal9100794

29. Zhang Y., Yao Y., Chang J., Lu X., Liu X., Hildebrandt D. // AIChE Journal. 2020. V. 66. № 11. Р. e17029. DOI: doi.org/10.1002/aic.17029

30. Wolf M., Gibson E.K., Olivier E.J., Neethling J.H., Catlow C.R.A., Fischer N., Claeys M. // ACS Catalysis. 2019. V. 9. № 6. Р. 4902-4918. DOI: 10.1021/acscatal.9b00160

31. Dalai A.K., Davis B.H. // Applied Catalysis A: General. 2008. V. 348. № 1. Р. 1-15. DOI: 10.1016/j.apcata.2008.06.021

32. Tucker C., van Steen E. // Catalysis Letters. 2021. V. 151. Р. 2631-2637. DOI: 10.1007/s10562-020-03475-7

33. van Steen E., Claeys M., Dry M.E., van de Loosdrecht J., Viljoen E.L., Visagie J. L. // The Journal of Physical Chemistry B. 2005. V. 109. № 8. Р. 3575-3577. DOI: 10.1021/jp045136o

34. Елисеев О. Л. Технологии "газ в жидкость" // Российский химический журнал. 2008. Т. 52. № 6. С. 53-62.


Review

For citations:


Zubkov I.N., Denisov O.D., Timokhina M.A., Savost'yanov A.P., Yakovenko R.E. Study of the influence of the gas circulation ratio on the production of C5–C18 alkenes in the Fischer–Tropsch synthesis. Kataliz v promyshlennosti. 2024;24(2):34-42. (In Russ.) https://doi.org/10.18412/1816-0387-2024-2-34-42

Views: 337


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)