

Study of the influence of the gas circulation ratio on the production of C5–C18 alkenes in the Fischer–Tropsch synthesis
https://doi.org/10.18412/1816-0387-2024-2-34-42
Abstract
The process of producing C5+ hydrocarbons, including unsaturated ones, on a zeolite-containing catalyst Сo-Al2O3 /SiO2 /ZSM-5/Al2O3 in flow and flow-circulation modes of operation at a temperature of 250 °C, a pressure of 2.0 MPa, GHSV 1000 h–1 has been studied , H2 /CO ratio = 1.70 in the source gas and circulation ratios of 4, 8 and 16. It was determined that the process indicators (selectivity and productivity for C5+ products) pass through a maximum at a circulation ratio of 8. The use of gas circulation in comparison with flow synthesis mode allows you to regulate the composition of products. An increase in the circulation ratio in the range of 4–16 leads to an increase in the proportion of formed olefins with a hydrocarbon chain length containing 5–20 carbon atoms, from 53.9 wt.% up to 65.7 wt.%. The use of a zeolite-containing catalyst intensifies the formation of C8–C12 alkenes in comparison with the Co-Al2O3 /SiO2 catalyst by 3,3 times – the content increases from 13,5 wt.% up to 44.2 wt.% at similar values of circulation ratio, pressure and H2 /CO ratio = 1.70 in the source gas. It was found that as the circulation ratio increases, the rate of deactivation of the zeolite-containing catalyst decreases, which may be caused by a decrease in the partial pressure of water in the reaction volume.
About the Authors
I. N. ZubkovRussian Federation
O. D. Denisov
Russian Federation
M. A. Timokhina
Russian Federation
A. P. Savost'yanov
Russian Federation
R. E. Yakovenko
Russian Federation
References
1. Голубь Ф.С., Болотов В.А., Пармон В.Н. // Катализ в промышленности. 2020. Т. 20. № 6. С. 433-455. DOI: 10.18412/1816-0387-2020-6-433-455
2. Голубь Ф.С., Болотов В.А., Пармон В.Н. // Катализ в промышленности. 2020. Т. 20. № 6. С. 456-472. DOI: 10.18412/1816-0387-2020-6-456-472
3. Blay V., Louis B., Miravalles R., Yokoi T., Peccatiello K.A., Clough M., Yilmaz B. // ACS Catalysis. 2017. V. 7. № 10. Р. 6542-6566. DOI: 10.1021/acscatal.7b02011
4. Alsudani F.T., Saeed A.N., Ali N.S., Majdi H.S., Salih H.G., Albayati T.M., Cata Saady N.M., Shakor Z.M. // Methane. 2023. V. 2. № 1. Р. 24-43. DOI: 10.3390/methane2010002
5. Kim K.J., Kim K.Y., Rhim G.B., Youn M.H., Lee Y.L., Chun D.H., Roh H. // Chemical Engineering Journal. 2023. V. 468. Р. 143632. DOI: 10.1016/j.cej.2023.143632
6. Sineva L., Mordkovich V., Asalieva E., Smirnova V. // Reactions. 2023. V. 4. № 3. Р. 359-380. DOI: 10.3390/reactions4030022
7. Gholami Z., Gholami F., Tišler Z., Hubáček J., Tomas M., Bačiak M., Vakili M. // Catalysts. 2022. V. 12. № 2. Р. 174. DOI: 10.3390/catal12020174
8. An Y., Lin T., Yu F., Yang Y., Zhong L., Wu M., Sun Y. // Science China Chemistry. 2017. V. 60. Р. 887-903. DOI: 10.1007/s11426-016-0464-1
9. Ma Z., Ma H., Zhang H., Wu X., Qian W., Sun Q., Ying W. // ACS omega. 2021. V. 6. № 7. Р. 4968-4976. DOI: 10.1021/acsomega.0c06008
10. Jeske K., Kizilkaya A. C., López-Luque I., Pfänder N., Bartsch M., Concepción P., Prieto G. // ACS catalysis. 2021. V. 11. № 8. Р. 4784-4798. DOI: 10.1021/acscatal.0c05027
11. Gogate M. R. // Petroleum Science and Technology. 2019. V. 37. № 5. Р. 559-565. DOI: 10.1080/10916466.2018.1555589
12. Ye M., Tian P., Liu Z. // Engineering. 2021. V. 7. № 1. Р. 17-21. DOI: 10.1016/j.eng.2020.12.001
13. Shiba N. C., Liu X., Yao Y. // Fuel Processing Technology. 2022. V. 238. Р. 107489. DOI: 10.1016/j.fuproc.2022.107489
14. Gao Y., Shao L., Yang S., Hu J., Zhao S., Dang J., Wang W., Yan X., Yang P. // Catalysis Communications. 2023. V. 181. Р. 106720. DOI: 10.1016/j.catcom.2023.106720
15. Pan X., Jiao F., Miao D., Bao X. // Chemical Reviews. 2021. V. 121. № 11. Р. 6588-6609. DOI: 10.1021/acs.chemrev.0c01012
16. Wang S., Wang P., Shi D., He S., Zhang L., Yan W., Qin Z., Li J., Dong M., Wang J., Olsbye U., Fan W. // ACS Catalysis. 2020. V. 10. № 3. Р. 2046-2059. DOI: 10.1021/acscatal.9b04629
17. Jiao F., Bai B., Li G., Pan X., Ye Y., Qu S., Xu C., Xiao J., Jia Z., Liu W., Peng T., Ding Y., Liu C., Li J., Bao X. // Science. 2023. V. 380. № 6646. Р. 727-730. DOI: 10.1126/science.adg2491
18. Yakovenko R.E., Savost'yanov A.P., Narochniy G.B., Soromotin V.N., Zubkov I.N., Papeta O.P., Svetogorov R.D., Mitchenko S.A. // Catalysis Science & Technology. 2020. V. 10. № 22. Р. 7613-7629. DOI: 10.1039/D0CY00975J
19. Яковенко Р.Е., Бакун В.Г., Зубков И.Н., Папета О.П., Салиев А.Н., Савостьянов А.П. Катализ в промышленности. 2023. Т. 23. № 2. С. 15-25. DOI: 10.18412/1816-0387-2023-2-15-25
20. Yakovenko R.E., Zubkov, I.N., Bakun V.G., Papeta O.P., Savostyanov A.P. // Petroleum Chemistry. 2022. V. 62. № 1. Р. 101-111. DOI: 10.1134/S0965544122010157
21. Zubkov I.N., Savost’yanov A.P., Soromotin V.N., Denisov O.D., Demchenko S.S., Yakovenko R.E. // Russian Journal of Applied Chemistry. 2022. – V. 95. № 12. Р. 1776-1789. DOI: 10.1134/S1070427222120047
22. Нарочный Г.Б., Яковенко Р.Е., Савостьянов А.П., Бакун В.Г. // Катализ в промышленности. 2016. № 1. С. 37-42. DOI: 10.18412/1816-0387-2016-1-37-42
23. Шавалеев Д.А., Травкина О.С., Алехина И.Е., Эрштейн А.С., Басимова Р.А., Павлов М.Л. // Вестник Башкирского университета. 2015. Т. 20. № 1. С. 58-65. DOI: -
24. Teimouri Z., Abatzoglou N., Dalai A.K. // Catalysts. 2021. V. 11. № 3. Р. 330. DOI: 10.3390/catal11030330
25. Rahmati M., Safdari M.S., Fletcher T.H., Argyle M.D., Bartholomew C.H. // Chemical reviews. 2020. V. 120. № 10. Р. 4455-4533. DOI: 10.1021/acs.chemrev.9b00417
26. Saib A.M., Moodley D.J., Ciobîcă I.M., Hauman M.M., Sigwebela B.H., Weststrate C.J., Niemantsverdriet J.W., Van de Loosdrecht J. // Catalysis Today. 2010. V. 154. № 3-4. Р. 271-282. DOI: 10.1016/j.cattod.2010.02.008
27. Яковенко Р.Е., Зубков И.Н., Нарочный Г.Б., Савостьянов А.П. // Катализ в промышленности. 2019. Т. 19. № 6. С. 430-435. DOI: 10.18412/1816-0387-2019-6-430-435
28. Petersen A.P., Claeys M., Kooyman P.J., van Steen E. // Catalysts. 2019. V. 9. № 10. Р. 794. DOI: 10.3390/catal9100794
29. Zhang Y., Yao Y., Chang J., Lu X., Liu X., Hildebrandt D. // AIChE Journal. 2020. V. 66. № 11. Р. e17029. DOI: doi.org/10.1002/aic.17029
30. Wolf M., Gibson E.K., Olivier E.J., Neethling J.H., Catlow C.R.A., Fischer N., Claeys M. // ACS Catalysis. 2019. V. 9. № 6. Р. 4902-4918. DOI: 10.1021/acscatal.9b00160
31. Dalai A.K., Davis B.H. // Applied Catalysis A: General. 2008. V. 348. № 1. Р. 1-15. DOI: 10.1016/j.apcata.2008.06.021
32. Tucker C., van Steen E. // Catalysis Letters. 2021. V. 151. Р. 2631-2637. DOI: 10.1007/s10562-020-03475-7
33. van Steen E., Claeys M., Dry M.E., van de Loosdrecht J., Viljoen E.L., Visagie J. L. // The Journal of Physical Chemistry B. 2005. V. 109. № 8. Р. 3575-3577. DOI: 10.1021/jp045136o
34. Елисеев О. Л. Технологии "газ в жидкость" // Российский химический журнал. 2008. Т. 52. № 6. С. 53-62.
Review
For citations:
Zubkov I.N., Denisov O.D., Timokhina M.A., Savost'yanov A.P., Yakovenko R.E. Study of the influence of the gas circulation ratio on the production of C5–C18 alkenes in the Fischer–Tropsch synthesis. Kataliz v promyshlennosti. 2024;24(2):34-42. (In Russ.) https://doi.org/10.18412/1816-0387-2024-2-34-42