

Co and Ni-containing catalysts for heavy oil refining: the effect of ethanol on the composition and structure of catalytic cracking products
https://doi.org/10.18412/1816-0387-2024-2-59-65
Abstract
The study deals with the products of thermal processing of heavy oil in the presence of Ni- and Co-containing catalysts that are formed in situ from the mixture of corresponding salts with ethanol. In comparison with thermal cracking, in the catalytic process the yield of bright fractions increases from 51 to 63 % and the yield of coke decreases from 3 to 2 wt.%. In the case of mixed Ni and Сo catalyst, the least yields of gas (5 wt.%) and coke (0.1 wt.%) are observed. A decrease in the sulfur content occurs in the products of both thermal (by 17 %) and catalytic cracking (from 12 to 32 rel.%) predominantly due to its removal as gaseous products. The structuralgroup characteristics of the averaged asphaltene molecules were studied before and after heavy oil cracking. XRD of solid cracking products was used to identify Ni0.96S, Ni9S8 and Co9S8 phases.
About the Authors
Kh. Kh. UrazovRussian Federation
N. N. Sviridenko
Russian Federation
N. S. Sergeev
Russian Federation
A. S. Akimov
Russian Federation
V. D. Ogorodnikov
Russian Federation
References
1. Hosseinpour M., Fatemi S., Ahmadi S. J., Morimoto M., Akizuki M., Oshima Y., Fumoto E. // Appl. Catal. B. 2018. V. 230. P. 91–101. https://doi.org/10.1016/j.apcatb.2018.02.030
2. A. A. Biyouki, N. Hosseinpoura, N. N. Nassar // Energy Fuels. 2018. V. 32. P. 5033–5044. https://doi.org/10.1021/acs.energyfuels.8b00638
3. Li C., Huang W., Zhou C., Chen Y. // Fuel. 2019. V. 257. P. 1-12. https://doi.org/10.1016/j.fuel.2019.115779
4. Guo K., Hansen V. F., Li H., Yu Z. // Fuel. 2018. V. 211. P. 697–703. https://doi.org/10.1016/j.fuel.2017.09.097
5. M. Chen, C. Li, G.‑R. Li, Y.‑L. Chen, C.‑G. Zhou // Pet Sci. 2019. V. 3. P. 439–446. https://doi.org/10.1007/s12182-019-0300-3
6. Al-Marshed A., Hart A., Leeke G., Greaves M., Wood J. // Chem. Res. 2015. V. 54. 43 P. 10645–55. https://doi.org/10.1021/acs.iecr.5b02953
7. Wang D., Li Y., Jin L., Hao K., Wei B., Yao D., Hu H. Wang D. // Appl. Catal. B. 2019. V. 258. P. 1-9. https://doi.org/10.1016/j.apcatb.2019.117944
8. Rana M. S., Sámano V., Ancheyta J., Diaz J. A. I. // Fuel. 2007. V. 86. P. 1216–1231. https://doi.org/10.1016/j.fuel.2006.08.004
9. Hosseinpour M., Soltani M., Noofeli A., Nathwani J. // Fuel. 2020. V. 271. P. 117618. https://doi.org/10.1016/j.fuel.2020.117618
10. Avbenake P.O., Al-Hajri R.S., Jibril B.Y. // Pet Sci Technol. 2020. V. 38. P. 800–807. https://doi.org/10.1080/10916466.2020.1779743
11. Li Y., Wang Z., Hu Z., Xu B., Li Y., Pu W., Zhao J. // Petroleum. 2020. V. 7. P. 117-122. https://doi.org/10.1016/j.petlm.2020.09.004
12. Omajali J. B., Hart A., Walker M., Wood J., Macaskie L.E. // Appl. Catal. B. 2017. V. 203. P. 807–819. https://doi.org/10.1016/j.apcatb.2016.10.074
13. Guo K., Li H., Yu Z. // Fuel. 2016. V. 185. P. 886–902. https://doi.org/10.1016/j.fuel.2016.08.047
14. Suwaid M. A., Varfolomeev M. A., Al-muntaser A. A., Yuan C., Starshinova V. L., Zinnatullin A., Vagizov F. G., Rakhmatullin I. Z., Emelianov D. A., Chemodanov A.E. // Fuel. 2020. V. 281. P. 118753. https://doi.org/10.1016/j.fuel.2020.118753
15. Mukhamatdinov I. I., Salih I. S. S., Rakhmatullin I. Z., Sitnov S. A., Laikov A. V., Klochkov V. V., Vakhin A. V. // J. Pet. Sci. Eng. 2019. V. 186. P. 106721. https://doi.org/10.1016/j.petrol.2019.106721
16. Fajun Z., Yongjian L., Ning L., Tianxiao X., Guangmeng Z., Kai W. // Energy Reports. 2021. V. 7. P. 4249-4272. https://doi.org/10.1016/j.egyr.2021.06.094
17. Djimasbe R., Varfolomeev M.A., Al-Muntaser A.A., Yuan C., Feoktistov D.A., Suwaid M. A., Kirgizov A. J., Davletshin R. R., Zinnatullin A. L., Fatou S. D., Galeev R. I., Rakhmatullin I. Z., Kwofie M., Klochkov V. V., Prochukhan K. Yu. // Fuel. 2022. V. 313. P. 122702. https://doi.org/10.1016/j.fuel.2021.122702
18. Kadkin O. N., Mikhailova A .N., Khafizov N. R., Yuan C., Varfolomeev M. A. // Fuel. 2022. V. 313. P. 123056. https://doi.org/10.1016/j.fuel.2021.123056
19. Kosari M., Golmohammadi M., Ahmadi S. J., Towfighi J., ChenariA. H. // The Journal of Supercritical Fluids.2017. V. 126. P. 14-24. https://doi.org/10.1016/j.supflu.2017.02.021.
20. Chen G., Yuan W., Ba, Y., Zhao W., Gu X., Zhang J., Jeje A. // Petroleum Chemistry. 2017. V. 57. P. 389–394. https://doi.org/10.1134/S0965544117050036
21. Lakhova A., Petrov S., Ibragimova D., Kayukova G., Safiulina A., Shinkarev A. Okekwe R. // Journal of Petroleum Science and Engineering. 2017. V. 153. P. 385-390. https://doi.org/10.1016/j.petrol.2017.02.015
22. Yeletsky P. M., Zaikina O. O., Sosnin G. A., Kukushkin R. G., Yakovlev V. A. // Fuel Process. Technol. 2020. V. 199 P. 106239. https://doi.org/10.1016/j.fuproc.2019.106239.
23. Li H, Gao H, Zhao X, Xia Z, Yu B, Sun D. // J Pet Sci Eng 2022. V. 208. P. 109271. https://doi.org/10.1016/J.PETROL.2021.109271
24. Sviridenko N.N. Akimov A.S. // J. of Supercritical Fluids. 2023. V. 192. 105784. https://doi.org/10.1016/j.supflu.2022.105784
25. Urazov Kh. Kh., Sviridenko N. N. // J Taiwan Inst Chem Eng. 2021. V. 127. P. 151-156. https://doi.org/10.1016/j.jtice.2021.07.044
26. Urazov, K. K., Sviridenko, N. N. // Solid Fuel Chem. 2022. V. 56. P. 128–132. https://doi.org/10.3103/S0361521922020100
27. Nassar N. N., Hassan A., Pereira-Almao P. // Energy & Fuels. 2011. V. 25 (3). P. 1017-1023. https://doi.org/10.1021/ef101230g
28. Nassar N. N., Hassan A., Pereira-Almao P. // Applied Catalysis A: General. 2013. V. 462-463. P. 116-120 https://doi.org/10.1016/j.apcata.2013.04.033.
29. Urazov K. K., Sviridenko N. N., Iovik Y. A., Kolobova E. N., Grabchenko M. V., Kurzina I. A., Mukhamatdinov I. I. // Catalysts. 2022. V. 12(10). P. 1154. https://doi.org/10.3390/catal12101154
30. Hoodless R. C., Moyes R. B., Wells P. B. // Catal. Today. 2006. V. 114. P. 377-382. https://doi.org/10.1016/j.cattod.2006.02.07
31. Tilley R. D., Jefferson A. D. // The Journal of Physical Chemistry B. 2002. V. 106 (42). P. 10895-10901. https://doi.org/10.1021/jp0256847
32. Bezverkhyy I., Afanasiev P., Danot M. // J Phys Chem B. 2004. V. 108. P. 7709–15. https://doi.org/10.1021/jp049692u
Review
For citations:
Urazov Kh.Kh., Sviridenko N.N., Sergeev N.S., Akimov A.S., Ogorodnikov V.D. Co and Ni-containing catalysts for heavy oil refining: the effect of ethanol on the composition and structure of catalytic cracking products. Kataliz v promyshlennosti. 2024;24(2):59-65. (In Russ.) https://doi.org/10.18412/1816-0387-2024-2-59-65