Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Co and Ni-containing catalysts for heavy oil refining: the effect of ethanol on the composition and structure of catalytic cracking products

https://doi.org/10.18412/1816-0387-2024-2-59-65

Abstract

The study deals with the products of thermal processing of heavy oil in the presence of Ni- and Co-containing catalysts that are formed in situ from the mixture of corresponding salts with ethanol. In comparison with thermal cracking, in the catalytic process the yield of bright fractions increases from 51 to 63 % and the yield of coke decreases from 3 to 2 wt.%. In the case of mixed Ni and Сo catalyst, the least yields of gas (5 wt.%) and coke (0.1 wt.%) are observed. A decrease in the sulfur content occurs in the products of both thermal (by 17 %) and catalytic cracking (from 12 to 32 rel.%) predominantly due to its removal as gaseous products. The structuralgroup characteristics of the averaged asphaltene molecules were studied before and after heavy oil cracking. XRD of solid cracking products was used to identify Ni0.96S, Ni9S8 and Co9S8 phases.

About the Authors

Kh. Kh. Urazov
Institute of Petroleum Chemistry SB RAS, Tomsk
Russian Federation


N. N. Sviridenko
Institute of Petroleum Chemistry SB RAS, Tomsk
Russian Federation


N. S. Sergeev
Institute of Petroleum Chemistry SB RAS, Tomsk
Russian Federation


A. S. Akimov
Institute of Petroleum Chemistry SB RAS, Tomsk
Russian Federation


V. D. Ogorodnikov
Institute of Petroleum Chemistry SB RAS, Tomsk
Russian Federation


References

1. Hosseinpour M., Fatemi S., Ahmadi S. J., Morimoto M., Akizuki M., Oshima Y., Fumoto E. // Appl. Catal. B. 2018. V. 230. P. 91–101. https://doi.org/10.1016/j.apcatb.2018.02.030

2. A. A. Biyouki, N. Hosseinpoura, N. N. Nassar // Energy Fuels. 2018. V. 32. P. 5033–5044. https://doi.org/10.1021/acs.energyfuels.8b00638

3. Li C., Huang W., Zhou C., Chen Y. // Fuel. 2019. V. 257. P. 1-12. https://doi.org/10.1016/j.fuel.2019.115779

4. Guo K., Hansen V. F., Li H., Yu Z. // Fuel. 2018. V. 211. P. 697–703. https://doi.org/10.1016/j.fuel.2017.09.097

5. M. Chen, C. Li, G.‑R. Li, Y.‑L. Chen, C.‑G. Zhou // Pet Sci. 2019. V. 3. P. 439–446. https://doi.org/10.1007/s12182-019-0300-3

6. Al-Marshed A., Hart A., Leeke G., Greaves M., Wood J. // Chem. Res. 2015. V. 54. 43 P. 10645–55. https://doi.org/10.1021/acs.iecr.5b02953

7. Wang D., Li Y., Jin L., Hao K., Wei B., Yao D., Hu H. Wang D. // Appl. Catal. B. 2019. V. 258. P. 1-9. https://doi.org/10.1016/j.apcatb.2019.117944

8. Rana M. S., Sámano V., Ancheyta J., Diaz J. A. I. // Fuel. 2007. V. 86. P. 1216–1231. https://doi.org/10.1016/j.fuel.2006.08.004

9. Hosseinpour M., Soltani M., Noofeli A., Nathwani J. // Fuel. 2020. V. 271. P. 117618. https://doi.org/10.1016/j.fuel.2020.117618

10. Avbenake P.O., Al-Hajri R.S., Jibril B.Y. // Pet Sci Technol. 2020. V. 38. P. 800–807. https://doi.org/10.1080/10916466.2020.1779743

11. Li Y., Wang Z., Hu Z., Xu B., Li Y., Pu W., Zhao J. // Petroleum. 2020. V. 7. P. 117-122. https://doi.org/10.1016/j.petlm.2020.09.004

12. Omajali J. B., Hart A., Walker M., Wood J., Macaskie L.E. // Appl. Catal. B. 2017. V. 203. P. 807–819. https://doi.org/10.1016/j.apcatb.2016.10.074

13. Guo K., Li H., Yu Z. // Fuel. 2016. V. 185. P. 886–902. https://doi.org/10.1016/j.fuel.2016.08.047

14. Suwaid M. A., Varfolomeev M. A., Al-muntaser A. A., Yuan C., Starshinova V. L., Zinnatullin A., Vagizov F. G., Rakhmatullin I. Z., Emelianov D. A., Chemodanov A.E. // Fuel. 2020. V. 281. P. 118753. https://doi.org/10.1016/j.fuel.2020.118753

15. Mukhamatdinov I. I., Salih I. S. S., Rakhmatullin I. Z., Sitnov S. A., Laikov A. V., Klochkov V. V., Vakhin A. V. // J. Pet. Sci. Eng. 2019. V. 186. P. 106721. https://doi.org/10.1016/j.petrol.2019.106721

16. Fajun Z., Yongjian L., Ning L., Tianxiao X., Guangmeng Z., Kai W. // Energy Reports. 2021. V. 7. P. 4249-4272. https://doi.org/10.1016/j.egyr.2021.06.094

17. Djimasbe R., Varfolomeev M.A., Al-Muntaser A.A., Yuan C., Feoktistov D.A., Suwaid M. A., Kirgizov A. J., Davletshin R. R., Zinnatullin A. L., Fatou S. D., Galeev R. I., Rakhmatullin I. Z., Kwofie M., Klochkov V. V., Prochukhan K. Yu. // Fuel. 2022. V. 313. P. 122702. https://doi.org/10.1016/j.fuel.2021.122702

18. Kadkin O. N., Mikhailova A .N., Khafizov N. R., Yuan C., Varfolomeev M. A. // Fuel. 2022. V. 313. P. 123056. https://doi.org/10.1016/j.fuel.2021.123056

19. Kosari M., Golmohammadi M., Ahmadi S. J., Towfighi J., ChenariA. H. // The Journal of Supercritical Fluids.2017. V. 126. P. 14-24. https://doi.org/10.1016/j.supflu.2017.02.021.

20. Chen G., Yuan W., Ba, Y., Zhao W., Gu X., Zhang J., Jeje A. // Petroleum Chemistry. 2017. V. 57. P. 389–394. https://doi.org/10.1134/S0965544117050036

21. Lakhova A., Petrov S., Ibragimova D., Kayukova G., Safiulina A., Shinkarev A. Okekwe R. // Journal of Petroleum Science and Engineering. 2017. V. 153. P. 385-390. https://doi.org/10.1016/j.petrol.2017.02.015

22. Yeletsky P. M., Zaikina O. O., Sosnin G. A., Kukushkin R. G., Yakovlev V. A. // Fuel Process. Technol. 2020. V. 199 P. 106239. https://doi.org/10.1016/j.fuproc.2019.106239.

23. Li H, Gao H, Zhao X, Xia Z, Yu B, Sun D. // J Pet Sci Eng 2022. V. 208. P. 109271. https://doi.org/10.1016/J.PETROL.2021.109271

24. Sviridenko N.N. Akimov A.S. // J. of Supercritical Fluids. 2023. V. 192. 105784. https://doi.org/10.1016/j.supflu.2022.105784

25. Urazov Kh. Kh., Sviridenko N. N. // J Taiwan Inst Chem Eng. 2021. V. 127. P. 151-156. https://doi.org/10.1016/j.jtice.2021.07.044

26. Urazov, K. K., Sviridenko, N. N. // Solid Fuel Chem. 2022. V. 56. P. 128–132. https://doi.org/10.3103/S0361521922020100

27. Nassar N. N., Hassan A., Pereira-Almao P. // Energy & Fuels. 2011. V. 25 (3). P. 1017-1023. https://doi.org/10.1021/ef101230g

28. Nassar N. N., Hassan A., Pereira-Almao P. // Applied Catalysis A: General. 2013. V. 462-463. P. 116-120 https://doi.org/10.1016/j.apcata.2013.04.033.

29. Urazov K. K., Sviridenko N. N., Iovik Y. A., Kolobova E. N., Grabchenko M. V., Kurzina I. A., Mukhamatdinov I. I. // Catalysts. 2022. V. 12(10). P. 1154. https://doi.org/10.3390/catal12101154

30. Hoodless R. C., Moyes R. B., Wells P. B. // Catal. Today. 2006. V. 114. P. 377-382. https://doi.org/10.1016/j.cattod.2006.02.07

31. Tilley R. D., Jefferson A. D. // The Journal of Physical Chemistry B. 2002. V. 106 (42). P. 10895-10901. https://doi.org/10.1021/jp0256847

32. Bezverkhyy I., Afanasiev P., Danot M. // J Phys Chem B. 2004. V. 108. P. 7709–15. https://doi.org/10.1021/jp049692u


Review

For citations:


Urazov Kh.Kh., Sviridenko N.N., Sergeev N.S., Akimov A.S., Ogorodnikov V.D. Co and Ni-containing catalysts for heavy oil refining: the effect of ethanol on the composition and structure of catalytic cracking products. Kataliz v promyshlennosti. 2024;24(2):59-65. (In Russ.) https://doi.org/10.18412/1816-0387-2024-2-59-65

Views: 326


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)