Dimensional heterogeneous model of a Fischer–Tropsch synthesis reactor with a fixed catalyst bed in approximation of isothermal granules
Abstract
Dimensional heterogeneous model of a Fischer–Tropsch (FT) reactor synthesis with a fixed catalyst bed in approximation of isothermal pellets is developed. The simulation of the FT process for laboratory reactor is conducted. Effect of the linear velocity of the gas stream and the inner diameter reactors on the thermal stability of the process is considered. It is shown that the size of the reactor is limited by the possibility of a «thermal explosion» in a frontal layer of the catalyst. The increasing of linear gas velocity increases the heat transfer and thus reduces overheating of the catalyst bed. It is shown that the process of preparing solid hydrocarbons may be carried out in a reactor of diameter not exceeding 18 mm. The maximum temperature variation in the length of the reactor 3, 4 and 6 m is 4,7, 4,2 and 3,6 °C respectively according to calculation. The conversion of CO in this case is 35,0, 34,4 and 33,9 %, respectively. Production of liquid hydrocarbons in high performance reactor requires to reduce the reactor internal diameter down to 12 mm. The maximum temperature variation in the length of the 3, 4 and 6 m is 9,6, 8,7 and 7,6 °C, and the CO conversion – 78,0, 77,4 and 76,7 % respectively. Developed mathematical model allows to estimate the parameters of the designed reactors and conditions of the FT synthesis, aimed to obtaining of solid or liquid hydrocarbons.
About the Authors
N. A. MamonovRussian Federation
L. M. Kustov
Russian Federation
S. A. Alkhimov
Russian Federation
M. N. Mikhailov
Russian Federation
References
1. Atwood H.E., Bennett C.O. Ind. Eng. Chem. Process. Des. Dev. 18 (1979). 163.
2. Bub G., Baerns M. Chem. Eng. Sci. 35. (1980). 348.
3. Everson R., Mulder H., Keyser M.J. Appl. Catal. A. 142. (1996). 223.
4. Jess A., Popp R., Hedden K. Appl. Catal. A. 186. (1999). 321.
5. Swart J.W.A.De, Krishna R., Sie S.T. Stud. Surf. Sci. Catal. 107. (1997). 213.
6. Wang Y.N., Xu Y.Y., Li Y.W., Zhao Y.L., Zhang B.J. Chem. Eng. Sci. 58. (2003). 867.
7. Güttel R., Turek T. Chem. Eng. Sci. 64. (2009). 955.
8. Jess A., Kern C. Chem Eng. Technol. 32. (2009). 1164.
9. Philippe R., Lacroix M., Dreibine L., Pham-Huu. C., Edouard D., Savine S., Luck F., Schweich D. Catal. Today.
10. S. (2009). 305.
11. Wu J., Zhang H., Ying W., Fang D. Chem. Eng. Technol. 33. (2010). 1083.
12. Rafiq M.H., Jakobsen H.A., Schmid R., Hustad J.E. Fuel. Proc. Techn. 92. (2011). 893.
13. Kwack S.-H., Bae J.W., Park M.-J., Kim S.-M., Ha K.-S., Jun K.-W. Fuel. 90. (2011). 1383.
14. Yates I.C., Satterfield C.N. Energy&Fuels. 5. (1991). Р. 168.
15. Steynberg A., Dry M. Stud. Surf. Sci. Catal. 152. (2004). Р. 533.
16. Sehabiague L., Lemoine R., Behkish A., Heintz Y.J., Sanoja M., Oukaci R., Morsi B.I. J. Chin. Inst. Chem. Eng.
17. (2008). 169.
18. Knochen J., Güttel R., Knobloch G., Turek Т. Chem. Eng. Proc. 49. (2010). 958.
19. Specchia V., Baldi G., Sicardi S. Chem. Eng. Commun. 4. (1980). 361.
20. Fuller E.N., Schettler P.D., Giddings J.C. Ind. Eng. Chem. 58. (1966). 19.
21. Deckwer W.D. Bubble Column Reactors. Wiley. New York. 1992.
Review
For citations:
Mamonov N.A., Kustov L.M., Alkhimov S.A., Mikhailov M.N. Dimensional heterogeneous model of a Fischer–Tropsch synthesis reactor with a fixed catalyst bed in approximation of isothermal granules. Kataliz v promyshlennosti. 2013;(3):34-42. (In Russ.)