

Deep oxidation of toluene on glass fiber catalysts in structured cartridges of various geometries
https://doi.org/10.18412/1816-0387-2024-4-25-34
Abstract
The work is devoted to the study of platinum-containing glass fiber catalysts (GFC) for the deep oxidation of hydrocarbons, which can be used in processes for purifying exhaust gases from volatile organic impurities, as well as for environmentally friendly combustion of fuels. The influence of the catalyst synthesis method on its activity in the deep oxidation of toluene was studied. The highest specific activity per unit mass of Pt is demonstrated by the traditional GFC IK-12-S102 based on a pre-leached zirconium-containing carrier, however, in terms of total activity per unit volume of the cartridge and per unit mass of the catalyst, GFC IK-12-S111, produced by the method of surface thermal synthesis, is more effective . The slightly higher platinum content in it is compensated by the possibility of using a significantly lighter, cheaper and more accessible carrier. It has been shown that applying a precursor solution to a carrier by spraying instead of impregnation provides an increase in specific activity. In addition, the influence of such properties as the structure of the glass fiber support (satin and openwork weaving) and the geometry of the location of the catalyst layers relative to the flow of the reaction mixture on the observed activity of the GFC was studied. It has been shown that the most effective for deep oxidation processes is the use of satin weaving as a carrier of the GFC, with the catalyst layers being longitudinally oriented relative to the flow of the reaction mixture. Criterion equations are proposed for assessing the hydraulic resistance of various types of GFC packages.
About the Authors
D. V. BaranovRussian Federation
A. V. Elyshev
Russian Federation
S. A. Lopatin
Russian Federation
A. N. Zagoruiko
Russian Federation
References
1. В. В. Барелко, И. А. Юранов, А. Ф. Черашев, А. П. Хрущ, В. А. Матышак, Т. И. Хоменко, О. Н. Сильченкова, О. В. Крылов / Каталитические системы на основе стекловолокнистых аморфных матриц, допированных металлами и их оксидами в реакции восстановления оксидов азота // Доклады Академии наук. 1998. Т. 361. № 4. С. 485–488.
2. L. Kiwi-Minsker, I. Yuranov, B. Siebenhaar, A. Renken. Glass fiber catalysts for total oxidation of CO and hydrocarbons in waste gases // Catalysis Today. 1999. V. 54. N 1. P. 39–46.
3. Balzhinimaev B.S., Paukshtis E.A., Vanag S.V., Suknev A.P., Zagoruiko A.N. Glass-fiber catalysts: Novel oxidation catalysts, catalytic technologies for environmental protection // Catalysis Today. 2010. V. 151. № 1-2. P. 195-199.
4. Bal’zhinimaev B. S., Parmon V. N. The Innovative Russian Approaches to Catalysts Design: New Generation of Fiberglass Catalysts. // Topics in Catalysis. 2012. V. 55. № 19–20, P.1289–1296.
5. E. Reichelt, M. P. Heddrich, M. Jahn, A. Michaelis / Fiber based structured materials for catalytic applications // Applied Catalysis A: General. 2014. V. 476. P. 78–90.
6. Golyashova K. , Glazov N. , Lopatin S. , Zagoruiko A. Glass-Fiber Catalysts for Selective Catalytic Reduction of Nitrogen Oxides by CO and Hydrocarbons. Catalysis Communications. 2023. V.183. 106765:1-11. DOI: 10.1016/j.catcom.2023.106765
7. Sergey Lopatin, Pavel Mikenin, Andrey Elyshev, Sergey Udovichenko, Andrey Zagoruiko. Catalytic device on the base of glass-fiber catalyst for environmentally safe combustion of fuels and utilization of toxic wastes. Chemical Engineering Journal, 2019. V. 373. P 406-412, https://doi.org/10.1016/j.cej.2019.05.056.
8. Sergey Lopatin, Andrey Elyshev, A.Zagoruiko. Catalytic device for environmentally friendly combustion of liquid fuels on the base of structured glass-fiber catalyst. Catalysis Today/ 2022. V. 383. P. 259-265. https://doi.org/10.1016/j.cattod.2021.02.010
9. А.Н. Загоруйко, С.А. Лопатин. Структурированные каталитические системы на основе стекловолокнистых катализаторов. Новосибирск, издательство НГТУ, 2018, 204 с.
10. A.N.Zagoruiko, S.A.Lopatin, P.E.Mikenin, D.A.Pisarev, S.V.Zazhigalov, D.V.Baranov. Novel structured catalytic systems ‐ cartridges on the base of fibrous catalysts. Chemical Engineering and Processing: Process Intensification. 2017. V.122. PP.460-472 https://doi.org/10.1016/j.cep.2017.05.018.
11. Федоров А.В. , Ермаков Д.Ю. , Каичев В.В. , Булавченко О.А. , Яковлев В.А. Исследование физико-химических и каталитических свойств смешанных оксидов CuO-Fe2O3-Al2O3 в реакциях глубокого окисления. Катализ в промышленности. 2017. Т.17. №4. С.315-323. DOI: 10.18412/1816-0387-2017-4-315-323
12. Свинцицкий Д.А. , Метальникова В.М. , Черепанова С.В. , Боронин А.И. Структурные особенности и каталитические свойства двойного оксида AgFeO2 в реакции окисления СО. Журнал структурной химии. 2022. Т.63. №9. 98501:1-13. DOI: 10.26902/jsc_id98501
13. Яшник С.А., Исмагилов З.Р. Окислительные катализаторы Pt–Pd/MnOx–Al2O3: перспективы применения для контроля за содержанием сажи в отработанных газах дизеля. Кинетика и катализ. 2019. Т.60. №4. С.486-498. DOI: 10.1134/S0453881119040257
14. С.А. Лопатин, П.Г. Цырульников, Ю.С. Котолевич, П.Е. Микенин, Д.А. Писарев, А.Н. Загоруйко. Структурированный стеклотканный катализатор ИК-12-С111 для глубокого окисления органических соединений. Катализ в промышленности. 2015. Т.15. № 3, С.67-72.
15. Загоруйко А.Н., Лопатин С.А., Бальжинимаев Б.С., Гильмутдинов Н.Р., Сибагатуллин Г.Г., Погребцов В.П., Назмиева И.Ф. Каталитический процесс дожига отходящих газов с использованием платинового стекловолокнистого катализатора ИК-12-С102 // Катализ в промышленности. 2010. № 2. С. 28-32.
Review
For citations:
Baranov D.V., Elyshev A.V., Lopatin S.A., Zagoruiko A.N. Deep oxidation of toluene on glass fiber catalysts in structured cartridges of various geometries. Kataliz v promyshlennosti. 2024;24(4):25-34. (In Russ.) https://doi.org/10.18412/1816-0387-2024-4-25-34