Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Kinetic model for selective trimerization of ethylene to hexene-1 on chromium-pyrrole catalyst

https://doi.org/10.18412/1816-0387-2024-4-65-77

Abstract

This works presents a kinetic model for trimerization of ethylene to hexene-1 on a chromium-pyrrole catalyst. Within the framework of the kinetic model, a scheme of elementary reactions is suggested for description of the reactions principles. The rate constants of the process stages, components orders of reactions and activation energies reflecting the temperature dependence of reaction stages have been determined. The model results are in good agreement with experimental data in the range of pressures 18-30 bar, temperatures 105-120℃ and catalyst concentrations 1,165-3,500 mg/l.

About the Authors

P. I. Kulchakovsky
NIOST LLC, Tomsk; National Research Tomsk Polytechnic University
Russian Federation


V. S. Ermolaev
Orgneftekhim-IT LLC, Innopolis
Russian Federation


S. L. Saratovskikh
Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka
Russian Federation


E. E. Faingold
Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka
Russian Federation


I. V. Sedov
Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka
Russian Federation


A. A. Biktimirov
NIOST LLC, Tomsk
Russian Federation


D. A. Lenev
NIOST LLC, Tomsk
Russian Federation


References

1. Breuil P.R., Magna L., Olivier-Bourbigou H. Role of Homogeneous Catalysis in Oligomerization of Olefins: Focus on Selected Examples Based on Group 4 to Group 10 Transition Metal Complexes // Catalysis Letters, vol. 145, pp. 173–192, 2015. DOI:10.1007/s10562-014-1451-x

2. Elvira O., C.G., Yoshio I. Linear alpha-Olefins. Chemical Economics Handbook: SRI Consulting, 2010. 78 p.

3. Salian S.M., Bagui M., Jasra R.V. Industrially relevant ethylene trimerization catalysts and processes // Applied Petrochemical Research, vol. 11, pp. 267-279, 2021. DOI:10.1007/s13203-021-00279-7

4. Alferov K.A., Belov G.P., Meng Y. Chromium catalysts for selective ethylene oligomerization to 1-hexene and 1-octene: Recent results // Applied Catalysis A: General, vol. 542, pp. 71-124, 2017. DOI:10.1016/j.apcata.2017.05.014

5. Tembe G. Catalytic tri- and tetramerization of ethylene: a mechanistic overview // Catalysis Reviews, vol. 65, no. 4, pp. 1412-1467, 2022. DOI:10.1080/01614940.2021.2014638

6. Naji-Rad E., Gimferrer M., Bahri-Laleh N., Nekoomanesh-Haghighi M., Jamjah R., Poater A. Exploring Basic Components Effect on the Catalytic Efficiency of Chevron-Phillips Catalyst in Ethylene Trimerization // Catalysts, vol. 8, no. 6, p. 224, 2018. DOI:10.3390/catal8060224

7. Arthur A., Madden W., Percy R., Soliman E. Ethylene to Linear, Alpha Olefins (1-Hexene & 1-Octene) // Senior Design Reports (CBE), University of Pennsylvania, no. 52, 2013.

8. McGuinness D.S. Olefin Oligomerization via Metallacycles: Dimerization, Trimerization, Tetramerization and Beyond // Chemical Reviews, vol. 111, no. 3, pp. 2321-2341, 2011. DOI:10.1021/cr100217q

9. Dixon J.T., Green M.J., Hess F.M., Morgan D.H. Advances in Selective Ethylene Trimerization—A Critical Overview // Journal of Organometallic Chemistry, vol. 689, no. 23, pp. 3641-3668, 2004. DOI:10.1016/j.jorganchem.2004.06.008

10. Bariashir C., Huang C., Solan G.A., Sun W.-H. Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization // Coordination Chemistry Reviews, vol. 385, pp. 208–229, 2019. DOI:10.1016/j.ccr.2019.01.019

11. Dokurno M.G., Douglas P.L., Simulation of an Ethylene Oligomerization Reactor System Using ASPEN // The Canadian Journal of Chemical Engineering, vol. 62, pp. 818-824, 1984.

12. Walsh R., Morgan D.H., Bollmann A., Dixon J.T. Reaction kinetics of an ethylene tetramerisation catalyst // Applied Catalysis A: General, vol. 306, pp. 184–191, 2006. DOI:10.1016/j.apcata.2006.03.055

13. Muller W., Wohl A., Peitz S., Peulecke N., Aluri B.R., Muller B.H., Heller D., Rosenthal U., Al-Hazmi M.H., Mosa F.M. A Kinetic Model for Selective Ethene Trimerization to 1-Hexene by a Novel Chromium Catalyst System // ChemCatChem, vol. 2, pp. 1130 – 1142, 2010. DOI: 10.1002/cctc.201000052

14. Tang S., Liu Z., Yan X., Li N., Cheng R., He X., Liu B. Kinetic Studies on the Pyrrole-Cr-based Chevron-Phillips Ethylene Trimerization Catalyst System // Applied Catalysis A: General, vol. 481, pp. 39-48, 2014. DOI: 10.1016/j.apcata.2014.04.006

15. Xun W., Huaiqi S., Tao J. Study on the Reaction Performance and Its Kinetics of Selective Continuous Ethylene Oligomerization Catalyzed by PNSiP/Cr(Ⅲ)/MMAO // Acta Petrrolei Sinica (Petroleum Processing Section), vol. 38, no. 5, pp. 1102-1111, 2022. DOI:10.3969/j.issn.1001-8719.2022.05.011

16. РФ патент № RU2430116C1, Способ полимеризации и сополимеризации олефиновых олигомеров, опубл. 2011.

17. Zilbershtein T.M., Nosikov A.A., Kochnev A.I., Lipskikh M.V., Golovko A.K. Enhancement of catalytic activity for selective oligomerization of ethylene by microwave treatment // Petroleum Chemistry, vol. 52, no. 4, pp. 253–260, 2012. DOI:10.1134/s0965544112040123

18. Briggs J.R. The selective trimerization of ethylene to hex-1-ene // Journal of the Chemical Society, Chemical Communications, vol. 11, p. 674, 1989.

19. Naji-Rad E., Gimferrer M., Bahri-Laleh N., Nekoomanesh-Haghighi M., Jamjah R., Poater A. Exploring Basic Components Effect on the Catalytic Efficiency of Chevron-Phillips Catalyst in Ethylene Trimerization // Catalysts, vol. 8, pp. 224-235, 2018. DOI:10.3390/catal8060224

20. Zilbershtein T.M., Kardash V.A., Suvorova V.V., Golovko A.K. Decene formation in ethylene trimerization reaction catalyzed by Cr-pyrrole system // Applied Catalysis A, General, vol. 475, pp. 371-378, 2014. DOI:10.1016/j.apcata.2014.01.051

21. Zhuze T.P., Zhurba A.S. Solubilities of ethylene in hexane, cyclohexane and benzene under pressure // Izvestiya Akademii Nauk SSSR, Otdelenie Khimicheskih Nauk (translated), vol. 2, pp. 364-366, 1960.

22. Laugier S., Richon D., Renon H.J. Ethylene + Olefin Binary Systems: Vapor-Liquid Equilibrium Experimental Data and Modeling // Chem. Eng. Data, vol. 39, pp. 388-391, 1994.

23. Pacheco C.R.N., Ferreira F.J.P., Uller A.M.C. Gas solubility - experimantal studies on nonpolar system // World Congress III of Chemical Engineering, pp. 104-107, 1986.

24. Schwaab M., Pinto J.C. Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant // Chemical Engineering Science, vol. 62, pp. 2750-2764, 2007. DOI:10.1016/j.ces.2007.02.020

25. Dennis J.E., Gay D.M., Welsch R.E. An adaptive Nonlinear Least-Squares Algorithm // ACM Transactions on Mathematical Software, vol. 7, no. 3, pp. 348-368, 1981. DOI: 10.1145/355958.355965

26. Venderbosch B., Oudsen J-P.H., Wolzak L.A., Martin D.J., Korstanje T.J., Tromp M. Spectroscopic Investigation of the Activation of a Chromium-Pyrrolyl Ethene Trimerization Catalyst // ACS Catal, vol. 9, pp. 1197−1210, 2019. DOI: 10.1021/acscatal.8b03414

27. Wohl A., Muller W., Peitz S., Peulecke N., Aluri B.A., Muller B.H., Heller D., Rosental U., Al-Hazmi M.H., Mosa F.M. Influence of Process Parameters on the Reaction Kinetics of the Chromium-Catalyzed Trimerization of Ethylene // Chemistry – A European Journal, vol. 16, pp. 7833-7842, 2010. DOI:10.1002/chem.201000533

28. Xun W., Yating W., Jing M., Qihuan H., Huaiqi S., Yongrui L., Jingyi Z., Qian Z., Qian L., Tao J. Performance and kinetics of silicon‑bridged diphosphines/CrCl3(C4H8O)3 modified methylaluminoxane catalyzed ethylene tri‑/tetramerization in a continuous stirred tank reactor // Reaction Kinetics, Mechanisms and Catalysis vol. 135, pp. 2441–2455. 2022. DOI:10.1007/s11144-022-02255-1


Review

For citations:


Kulchakovsky P.I., Ermolaev V.S., Saratovskikh S.L., Faingold E.E., Sedov I.V., Biktimirov A.A., Lenev D.A. Kinetic model for selective trimerization of ethylene to hexene-1 on chromium-pyrrole catalyst. Kataliz v promyshlennosti. 2024;24(4):65-77. (In Russ.) https://doi.org/10.18412/1816-0387-2024-4-65-77

Views: 393


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)