Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Applications of nickel-containing structured microfibrous catalysts for the process of propane hydrogenolysis

https://doi.org/10.18412/1816-0387-2024-5-14-24

Abstract

This work evaluates the possibility of using nickel-containing structured glass fiber catalysts (Ni/GFC) for the process of hydrogenolysis of gas condensate (GC) into transportable components of natural gas, which will increase the efficiency of GC processing and contribute to the development of more cost-effective technologies in the oil-gas industry. Ni/GFC samples with Ni content of 5, 10 and 15% wt. were synthesized by surface thermal synthesis (STS). An industrial granular catalyst with a mass Ni content of 16% was used to compare the catalytic activity of the obtained catalysts. The highest activity and selectivity of methane formation is observed on the 10% Ni/ GFC catalyst, by these parameters it is superior not only to other GFCs, but also the traditional granular catalyst.

About the Authors

Mohamd Sebaa
Tyumen State University
Russian Federation


V. B. Kharitontsev
Tyumen State University
Russian Federation


N. O. Azarapin
Tyumen State University
Russian Federation


Bona Lu
Chinese Academy of Sciences, Beijing
China


A. N. Zagoruiko
Tyumen State University; Boreskov Institute of Catalysis
Russian Federation


A. V. Elyshev
Tyumen State University
Russian Federation


References

1. Итоги работы Минэнерго России и основные результаты функционирования топливно-энергетического комплекса в 2020 году. Задачи на 2021 год и среднесрочную перспективу. Апрель 2021. 70 с.

2. Выбросы метана в нефтегазовой отрасли. Аналитический центр при правительстве РФ. Энергетический бюллетень. Июль 2020. 28 с.

3. Sinfelt J.H. // Advances in catalysis. 1973. V. 23. P. 91–119.‏ DOI: 10.1016/S0360-0564(08)60299-0.

4. S. David J., Gordon J.K., Geoff W. // Physical Chemistry Chemical Physics .1999 . №1. P. 2581–2587.‏ DOI: 10.1039/A809297D.

5. Leclercq G. , Leclercq L., Bouleau L.M., Pietrzyk S. , Maurel R . // Journal of Catalysis . 1984 . V.88.1. P. 8–17.‏ DOI: 10.1016/0021-9517(84)90044-7.

6. Joseph C.M., Robert B.A. // Journal of Catalysis. 1979. V.82 . № 2 .P. 253–259.‏ DOI: 10.1016/0021-9517(79)90262-8.

7. Bond C.G., Robert H.C. // Journal of Catalysis. 1997. V.166. № 2 .P. 172–185.‏ DOI: 10.1006/jcat.1997.1490.

8. Bond C.G., Michael R.G. // Catalysts. Catalysis letters. 1989. V. 2. P. 257–261.‏ DOI: 10.1007/BF00770222.

9. Bond C.G., Joop C.S. // Journal of Molecular Catalysis A: Chemical. 1995. V. 98. № 2. P. 81–99.‏ DOI: 10.1016/1381-1169(95)00008-9.

10. Hackler R.A., Kennedy R.M. // Technology Innovation for the Circular Economy: Recycling, Remanufacturing, Design, Systems Analysis and Logistics. 2024. P. 421-432. DOI: 10.1002/9781394214297.ch33.

11. Musa A., Jaseer E.A., Barman S., & Garcia N. // Energy & Fuels. 2024. P. 1676–1691. DOI: 10.1021/acs.energyfuels.3c04109. DOI: 10.1021/jacsau.1c00200.

12. Wang C, Xie T, Kots PA, et al. // JACS Au. 2021 1(9) . P. 1422–1434. DOI: 10.1021/jacsau.1c00200.

13. Mingyu Chu, Weilin Tu, Shuangqiao Yang, Congyang Zhang, Qingye Li, Qiao Zhang, Jinxing Chen. // SusMat. 2022. 2.2. P. 161–185. DOI: 10.1002/sus2.55.

14. Chen L. et al. // Reaction Chemistry & Engineering. 2022. Т. 7. №. 4. P. 844-854. DOI: 10.1039/D1RE00431J.

15. Структурированные каталитические системы на основе стекловолокнистых катализаторов: монография / А.Н. Загоруйко, С. А. Лопатин. – Новосибирск: Изд-во НГТУ, 2018. – 207 с.

16. Бальжинимаев Б.С., Сукнёв А.П., Гуляева Ю. К., Ковалев Е. В. // Катализ в промышленности. 2015. V. 15. № 4. P. 22–29.

17. Balzhinimaev B.S., Paukshtis E.A., Vanag S.V., Suknev A.P., Zagoruiko A.N. // Catalysis Today. 2010. V. 151. P. 195-199. DOI: 10.1016/j.cattod.2010.01.011.

18. Balzhinimaev B.S., Simonova L.G., Barelko V.V., Toktarev A.V., Zaikovskii V.I., Chumachenko V.A. // Chemical Engineering Journal. 2003. V. 91. № 2–3. P. 175–179. DOI: 10.1016/S1385-8947(02)00151-1.

19. Микенин П.Е., Цырульников П.Г., Котолевич Ю.С., Загоруйко А.Н. // Катализ в промышленности. 2015. № 1. P. 65–70. DOI: 10.18412/1816-0387-2015-1-64-69.

20. Zazhigalov S., Elyshev A., Lopatin S., Larina T., Cherepanova S., Mikenin P., Pisarev D., Baranov D., Zagoruiko A. // Reaction Kinetics, Mechanisms and Catalysis, 2017, 120(1). P. 247-260. DOI: 10.1007/s11144-016-1089-3.

21. Mikenin P., Zazhigalov S., Elyshev A., Lopatin S., Larina T., Cherepanova S., Pisarev D., Baranov D., Zagoruiko A. // Catalysis Communications, 2016. V.87. P. 36–40. DOI: 10.1016/j.catcom.2016.08.038

22. Popov M.V., Zazhigalov S.V., Larina T.V., Cherepanova S.V., Bannov A.G., Lopatin S.A., Zagoruiko A.N. // Catalysis for Sustainable Energy. 2017. V.4. P.1–6. DOI: 10.1515/cse-2017-0001

23. Aldashukurova G.B., Mironenko A.V., Mansurov Z.A., Shikina N.V., Yashnik S.A., Kuznetsov V.V., Ismagilov Z.R. // Journal of Energy Chemistry. 2013. V. 22. № 5. P. 811–818. DOI: 10.1016/S2095-4956(13)60108-4

24. Britcher L.G., Matisons J.G. // ACS Symposium Series. 2000. V. 760. P. 127–144. DOI: 10.1021/bk-2000-0760.ch008

25. Li L., Diao Y., Liu X. // Journal of Rare Earths. 2014. V. 32. № 5. P. 409–415. DOI: 10.1016/S1002-0721(14)60086-7

26. Shalygin A., Paukshtis E., Kovalyov E., Bal'zhinimaev B. // Frontiers of Chemical Science and Engineering. 2013. V. 7. № 3. P. 279–288. DOI: 10.1007/s11705-013-1338-1

27. Debeche T., Marmet C., Kiwi-Minsker L., Renken A., Juillerat M.A. // Enzyme and Microbial Technology. 2005. V. 36. № 7. P. 911–916. DOI: 10.1016/j.enzmictec.2005.01.012

28. Palau J., Colomer M., Penya-Roja J.M., Martínez-Soria V. // Industrial & Engineering Chemistry Research. 2012. V. 5. № 17. P. 5986–5994. DOI: 10.1021/ie300357x

29. Sangkhun W., Laokiat L., Tanboonchuy V., Khamdahsag P., Grisdanurak N. // Superlattices and Microstructures. 2012. V. 52. № 4. P. 632–642. DOI: 10.1016/j.spmi.2012.06.026

30. Salmi T., Mäki-Arvela P., Toukoniitty E., Kalantar N.A., Lindfors L.E., Sjoholm R., Laine E. // Studies in Surface Science and Catalysis. 2000. V. 130. P. 2033–2038.‏ DOI: 10.1016/S0167-2991(00)80767-3

31. Патент РФ №66 974, опубл. 10.10.2007

32. Ginette L, Stanislas P., Mohamed P., Mohamed K. // Journal of Catalysis. 1986. V. 99. № 1. P. 1–11. DOI: 10.1016/0021-9517(86)90192-2

33. Carter J.L., Cusumano J.A., Sinfelt J.H. // The Journal of Physical Chemistry . 1966. V. 70. № 7. P. 2257–2263. DOI: 10.1021/j100879a029

34. Guczi L., Gudkov B.S., Tetenyi P. // Journal of Catalysis. 1972. V. 24. 2. P. 187–196. DOI: 10.1016/0021-9517(72)90061-9

35. ‏Anderson J.R., Baker B.G. // Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1963. V. 271. № 1346. P. 402 – 423.‏ DOI: 10.1098/rspa.1963.0026


Review

For citations:


Sebaa M., Kharitontsev V.B., Azarapin N.O., Lu B., Zagoruiko A.N., Elyshev A.V. Applications of nickel-containing structured microfibrous catalysts for the process of propane hydrogenolysis. Kataliz v promyshlennosti. 2024;24(5):14-24. (In Russ.) https://doi.org/10.18412/1816-0387-2024-5-14-24

Views: 255


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)