

Разложение аммиака на Co-Al2O3 /SiO2 катализаторах: влияние способов восстановления кобальта
https://doi.org/10.18412/1816-0387-2024-5-25-32
Abstract
The focus on "green" energy requires the search for environmentally friendly energy storage systems. The reason for choosing ammonia as a potential storage for hydrogen is its high energy capacity and the absence of carbon and nitrogen oxide emissions during decomposition. Herein, we tested Co-Al2O3/SiO2 ammonia decomposition catalysts that had been pre-activated via cyclic hydrogenation-carburization-hydrogenation (RCR) and reduction-oxidation-reduction (ROR) procedures versus the conventional cobalt oxides reduction with hydrogen (R). The samples were characterized by H2-TPR, TEM and synchrotron X-ray diffraction techniques, which revealed that the structural properties of the catalysts were not modified by the reaction. Since the activities of the tested catalysts and the effective reaction barriers appeared to be close, the easiest-to-prepare catalyst R was chosen for the long-term catalytic trial (500 h), and it showed excellent performance stability.
About the Authors
R. E. YakovenkoRussian Federation
T. V. Krasnyakova
Russian Federation
A. N. Saliev
Russian Federation
R. D. Svetogorov
Russian Federation
V. N. Soromotin
Russian Federation
A. V. Volik
Russian Federation
A. P. Savostyanov
Russian Federation
S. A. Mitchenko
Russian Federation
References
1. Schueth F. //Chemie Ingenieur Technik. 2011. V. 83. N. 11. P. 1984-1993. https://doi.org/10.1002/cite.201100147
2. Wan, Z., Tao, Y., Shao, J., Zhang, Y., You, H. // Energy Conversion and Management. 2021. V. 228. P. 113729. https://doi.org/10.1016/j.enconman.2020.113729
3. Ristig, S., Poschmann, M., Folke, J., Gómez‐Cápiro, O., Chen, Z., Sanchez‐Bastardo, N., Ruland, H. // Chemie Ingenieur Technik. 2022. V. 94. N. 10. P. 1413-1425. https://doi.org/10.1002/cite.202200003
4. Lucentini, I., Garcia, X., Vendrell, X., Llorca, J. // Industrial & Engineering Chemistry Research. 2021. V. 60. N. 51. P. 18560-18611. https://doi.org/10.1021/acs.iecr.1c00843
5. Hu, X. C., Wang, W. W., Gu, Y. Q., Jin, Z., Song, Q. S., Jia, C. J. // ChemPlusChem. 2017. V. 82. N. 3. P. 368-375. https://doi.org/10.1002/cplu.201600444
6. Cheddie, D. Ammonia as a hydrogen source for fuel cells: a review. 2012. P. 333-362.
7. Bell, T. E., Torrente-Murciano, L. // Topics in Catalysis. 2016. V. 59. P. 1438-1457. https://doi.org/10.1007/s11244-016-0653-4
8. García-Bordejé, E., Armenise, S., Roldán, L. // Catalysis Reviews. 2014. V. 56 N. 2. P. 220-237. https://doi.org/10.1080/01614940.2014.903637
9. Hill, A. K., & Torrente-Murciano, L. // Applied Catalysis B: Environmental. 2015. V. 172. P. 129-135. https://doi.org/10.1016/j.apcatb.2015.02.011
10. Hill, A. K., Torrente-Murciano, L. // International journal of hydrogen energy. 2014. V. 39. N. 15. P. 7646-7654. https://doi.org/10.1016/j.ijhydene.2014.03.043
11. Yin, S. F., Xu, B. Q., Zhou, X. P., Au, C. T. // Applied Catalysis A: General. 2004. V. 277. N. 1-2. P. 1-9. https://doi.org/10.1016/j.apcata.2004.09.020
12. Zhang, Z. S., Fu, X. P., Wang, W. W., Jin, Z., Song, Q. S., Jia, C. J. // Science China Chemistry. 2018. V. 61. P. 1389-1398. https://doi.org/10.1007/s11426-018-9261-5
13. Bell, T. E., Ménard, H., Carballo, J. M. G., Tooze, R., Torrente-Murciano, L. // International Journal of Hydrogen Energy, 2020. V. 45. N. 51. P. 27210-27220. https://doi.org/10.1016/j.ijhydene.2020.07.090
14. Podila, S., Driss, H., Zaman, S. F., Ali, A. M., Al-Zahrani, A. A., Daous, M. A., Petrov, L. A. // International journal of hydrogen energy. 2017. V. 42. N. 38. P. 24213-24221. https://doi.org/10.1016/j.ijhydene.2017.07.112
15. Varisli, D., & Kaykac, N. G. // International Journal of Hydrogen Energy. 2016. V. 41. N. 14. P. 5955-5968. https://doi.org/10.1016/j.ijhydene.2016.02.097
16. Podila, S., Driss, H., Zaman, S. F., Alhamed, Y. A., AlZahrani, A. A., Daous, M. A., Petrov, L. A // Journal of Molecular Catalysis A: Chemical. 2016. V. 414. P. 130-139. https://doi.org/10.1016/j.molcata.2016.01.012
17. Zhang, H., Alhamed, Y. A., Al-Zahrani, A., Daous, M., Inokawa, H., Kojima, Y., Petrov, L. A. // International journal of hydrogen energy. 2014. V. 39. N. 31. P. 17573-17582. https://doi.org/10.1016/j.ijhydene.2014.07.183
18. Li, G., Zhang, H., Yu, X., Lei, Z., Yin, F., He, X. // International Journal of Hydrogen Energy. 2022. V. 47. N. 26. P. 12882-12892. https://doi.org/10.1016/j.ijhydene.2022.02.046
19. Zhang, H., Alhamed, Y. A., Chu, W., Ye, Z., AlZahrani, A., Petrov, L. // Applied Catalysis A: General. 2013. V. 464. P. 156-164. https://doi.org/10.1016/j.apcata.2013.05.046
20. Zhao, C., Yang, Y., Wu, Z., Field, M., Fang, X. Y., Burke, N., Chiang, K. // Journal of Materials Chemistry A. 2014. V. 2. N. 46. P. 19903-19913. https://doi.org/10.1039/C4TA04561K
21. Shiba, N. C., Yao, Y., Liu, X., Hildebrandt, D. // Reviews in Chemical Engineering. 2022. V. 38. N. 5. P. 503-538. https://doi.org/10.1515/revce-2020-0023
22. Яковенко Р.Е., Зубков И.Н., Нарочный Г.Б., Папета О.П., Денисов О.Д., Савостьянов А.П. // Кинетика и катализ. 2020. Т. 61. № 2. С. 278.
23. Яковенко Р. Е., Краснякова Т. В., Салиев А. Н., Шилов М. А., Волик А. В., Савостьянов А. П., Митченко С. А. // Кинетика и катализ. 2023. T. 64, № 2. C. 203-215. DOI: 10.31857/S0453881123020090
24. Svetogorov, R. D., Dorovatovskii, P. V., Lazarenko, V. A. // Crystal Research and Technology. 2020. V. 55. N. 5. https://doi.org/10.1002/crat.201900184
25. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). 2012. URL: www.icdd.com
26. Young, R.A., The Rietveld Method, Oxford: Oxford University, 1995, p. 298
27. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release 2012. web site: www.icdd.com. 2014. № 000-15-0806.
28. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release 2012. web site: www.icdd.com. 2014. № 48-1719.
29. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release 2012. web site: www.icdd.com. 2014. № 010-89-4308.
30. Fratalocchi, L., Groppi, G., Visconti, C. G., Lietti, L., Tronconi, E. // Catalysis Today. 2020. V. 342. P. 79-87. https://doi.org/10.1016/j.cattod.2019.02.069
31. Zhao, N., Chen, Y., Li, X., Chen, T., Nisa, M. U., Li, Z. // Molecular Catalysis. 2023. V. 549. https://doi.org/10.1016/j.mcat.2023.113483
32. Lu, W., Wang, J., Ma, Z., Chen, C., Liu, Y., Hou, B., Wang, B. // Fuel. 2023. V. 332. https://doi.org/10.1016/j.fuel.2022.126115
33. Patanou, E., Tsakoumis, N. E., Myrstad, R., Blekkan, E. A. // Applied Catalysis A: General. 2018. V. 549. P. 280-288. https://doi.org/10.1016/j.apcata.2017.10.007
Review
For citations:
Yakovenko R.E., Krasnyakova T.V., Saliev A.N., Svetogorov R.D., Soromotin V.N., Volik A.V., Savostyanov A.P., Mitchenko S.A. . Kataliz v promyshlennosti. 2024;24(5):25-32. (In Russ.) https://doi.org/10.18412/1816-0387-2024-5-25-32