Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Catalytic purification of helium concentrate from hydrogen: catalysts, conditions and features of the process

https://doi.org/10.18412/1816-0387-2024-5-33-39

Abstract

The paper presents the results of a study of Pt and Pd catalysts deposited on porous aluminum oxide in the reaction of hydrogen oxidation reaction for use the process of helium concentrate purification. The properties of the prepared catalysts were compared with the properties of a foreign reference catalyst. In a laboratory reactor using a mixture simulating helium concentrate, we studied the “ignition” and deactivation of catalysts at room temperature, which simulates the conditions at the inlet section of an industrial adiabatic reactor. The properties of catalysts were also studied at temperatures of 200, 250 and 300 °C under conditions simulating the middle part and the outlet of an industrial reactor. The secondary process of hydrogen formation at 250-300 °C was studied, which is explained by methane and ethane steam reforming which present in the model mixture simulating helium concentrate. The results of the work can be used in the development of domestic catalysts for the purification of helium obtained from natural gas.

About the Authors

S. I. Uskov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


D. I. Potemkin
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


A. S. Urlukov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


V. A. Chumachenko
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. Якуцени В.П. // Нефтегазовая технология. Теория и практика. 2009. Т.4. №1.

2. https://itek.ru/reviews/ekspert-rossiya-stanet-mirovym-liderom-po-proizvodstvu-geliya/

3. https://irkutskoil.ru/press-center/glava-ink-gelievyy-zavod-zapushchen-v-rezhime-opytnogo-primeneniya/

4. J. Kim, J. Yu, S. Lee, A. Tahmasebi, C.-H. Jeon, J. Lucas. // Int. J. Hydrogen Energy. 2021. V. 46. P. 40073-40104. https://doi.org/10.1016/j.ijhydene.2021.09.236

5. Загоруйко А.Н., Лопатин С.А., Микенин П.Е., Елышев А.В. // Катализ в промышленности. 2022. Т. 22. № 4. С. 22-27. DOI 10.18412/1816-0387-2022-4-22-27

6. C. Zhang, J. Zhang, J. Maa. // Int. J. Hydrogen Energy. 2012. V. 37. P. 12941-12946. https://doi.org/10.1016/j.ijhydene.2012.05.073

7. J. Zhang, K. Zhao, X. Li, B. Li, D. Zhang, L. Xie. Int. J. Hydrogen Energy. 2021. V. 46. P. 35014-35026. https://doi.org/10.1016/j.ijhydene.2021.08.049

8. Y. Li, X. Zhu, Y. Chen, S. Zhang, J. Li, J. Liu. // J. Energy Chemistry. 2020. V. 47. P. 138-145. https://doi.org/10.1016/j.jechem.2019.12.004

9. F. Jiang, F. Zhu, F. Yang, X. Yan, A. Wu, L. Luo, X. Li, J. Zhang. // ACS Catal. 2020. V. 10. I. 1. P. 604–612. https://doi.org/10.1021/acscatal.9b04598

10. G.M. Arzac, O. Montes, A. Fernández. // App. Catal. B: Env. 2017. V. 201. P. 391–399. http://dx.doi.org/10.1016/j.apcatb.2016.08.042

11. Łomot D., Karpiński Z. // Res. Chem. Intermed. 2015. V. 41. P. 9171—9179. https://doi.org/10.1007/s11164-015-1935-3

12. J. Kim, J. Yu, S. Lee, A. Tahmasebi, C.-H. Jeon, J. Lucas. // Intern. J. of Hydrogen Energy. 2021. V. 46. I. 80. P. 40073-40104.

13. A.E. Kozhukhova, S.P. du Preez, D.G. Bessarabov. // Int. J. Hydrogen Energy. 2024. V. 51 B. P. 1079-1096. https://doi.org/10.1016/j.ijhydene.2023.09.119

14. K. Inagawa, D. Matsumura, M. Taniguchi, S. Uegaki, T. Nakayama, J. Urano, T. Aotani, H. Tanaka. // J. Phys. Chem. C. 2023. V. 127. P. 11542−11549. https://doi.org/10.1021/acs.jpcc.3c02237

15. F. Giarratano, G.M. Arzac, V. Godinho, D. Hufschmidt, M.C. Jiménez de Haro, O. Montes, A. Fernández. // App. Cat. B: Env. 2018. V. 235. P. 168–176. https://doi.org/10.1016/j.apcatb.2018.04.064

16. S. Kaneko, T. Arakawa, M. Ohshima, H. Kurokawa, H. Miura. // Appv Catv A: Gen. 2009. V. 356. P. 80–87. https://doi.org/10.1016/j.apcata.2008.12.022

17. H.-J. Eom, J. H. Jang, D.-W. Lee, S. Kim, K.-Y. Lee. // J. Mol. Cat. A: Chemical. 2011. V. 349. P. 48-54. https://doi.org/10.1016/j.molcata.2011.08.017

18. F.-C. Buciuman, F. Patcas, J.-C. Menezo, J. Barbier, T. Hahn, H.-G. Lintz. // App. Cat. B: Env. 2002. V. 35. P. 175-183. https://doi.org/10.1016/S0926-3373(01)00250-8

19. Y. Varun, I. Sreedhar, S. A. Singh. // J. Env. Chem. Eng. 2022. V. 10. P. 108384. https://doi.org/10.1016/j.jece.2022.108384

20. https://catalysts.basf.com/multimedia/literature-library/adsorbents/adsorbents-for-deoxo

21. https://www.clariant.com/en/Solutions/Products/2019/07/22/08/33/EnviCat-GP

22. https://www.topsoe.com/our-resources/knowledge/our-products/catalysts/ck-304


Review

For citations:


Uskov S.I., Potemkin D.I., Urlukov A.S., Chumachenko V.A. Catalytic purification of helium concentrate from hydrogen: catalysts, conditions and features of the process. Kataliz v promyshlennosti. 2024;24(5):33-39. (In Russ.) https://doi.org/10.18412/1816-0387-2024-5-33-39

Views: 164


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)