

Deoxygenation and isomerization activity balance for NiMo/ZSM-23 catalysts as an effect of Mo/(Ni+Mo) ratio in hydroprocessing of fatty acids
https://doi.org/10.18412/1816-0387-2024-5-46-60
Abstract
Series of Ni-Mo catalysts based on ZSM-23 zeolite were synthesized by incipient wetness impregnation – with a fixed content of Ni (5 wt. %). These catalysts were tested in a hydroprocessing of a mixture of fatty acids (C16-C18) in a flow reactor at a temperature of 300 °C, a pressure of 2.5 MPa and WHSV = 8.4 h-1. The influence of the ratio of metals on the formation of forms of the active component, as well as on the activity, selectivity to iso-alkanes and the stability of catalysts during the hydroprocessing of a mixture of undiluted fatty acids was determined. The ratio of metals was investigated in the range from 0 to 1. The highest deoxygenation activity and highest isoalkanes yield were found for sample with Mo/(Ni+Mo) ratio equal 0.25, in which, according to the XPS, the Mo/(Ni+Mo) ratio on the surface is 0.4.
About the Authors
K. S. KovalevskayaRussian Federation
R. G. Kukushkin
Russian Federation
O. O. Zaikina
Russian Federation
V. O. Rodina
Russian Federation
T. V. Larina
Russian Federation
T. S. Glazneva
Russian Federation
A. A. Saraev
Russian Federation
V. A. Yakovlev
Russian Federation
References
1. Dabbawala A.A. et al. // Appl Surf Sci. 2023. Vol. 640, № May. P. 158294. DOI: 10.1016/j.apsusc.2023.158294.
2. Kordulis C. et al. // Appl Catal B. 2016. Vol. 181. P. 156–196. DOI: 10.1016/j.apcatb.2015.07.042.
3. Song M. et al. // Energy. 2023. Vol. 283, № September. P. 129107. DOI: 10.1016/j.energy.2023.129107.
4. Kittel H., Horský J., Šimáček P. // Fuel. 2024. Vol. 359, № September 2023. DOI: 10.1016/j.fuel.2023.130390.
5. Alkhoori S. et al. // Journal of Industrial and Engineering Chemistry. The Korean Society of Industrial and Engineering Chemistry, 2023. Vol. 127. P. 36–61. DOI: 10.1016/j.jiec.2023.07.031.
6. Goh B.H.H. et al. // Energy Convers Manag. 2022. Vol. 251, № October 2021. DOI: 10.1016/j.enconman.2021.114974.
7. Yeletsky P.M. et al. // Fuel. 2020. Vol. 278, № 1. DOI: 10.1016/j.fuel.2020.118255.
8. Li X. et al. // Renewable and Sustainable Energy Reviews. 2018. Vol. 82. P. 3762–3797. DOI: 10.1016/j.rser.2017.10.091.
9. Cheah K.W. et al. // Molecular Catalysis. 2021. P. 111469. DOI: 10.1016/j.mcat.2021.111469.
10. Aljajan Y. et al. // Catalysts. Multidisciplinary Digital Publishing Institute. 2023. Vol. 13, № 10. DOI: 10.3390/catal13101363.
11. Zhang M. et al. // Ind Eng Chem Res. 2016. Vol. 55, № 21. P. 6069–6078. DOI: 10.1021/acs.iecr.6b01163.
12. Gao S. Bin et al. // Pet Sci. China University of Petroleum (Beijing), 2020. Vol. 17, № 6. P. 1752–1763. DOI: 10.1007/s12182-020-00500-7.
13. Romero D. et al. // J Catal. 2021. Vol. 394. P. 284–298. DOI: 10.1016/j.jcat.2020.11.007.
14. Kay Lup A.N. et al. // Journal of Industrial and Engineering Chemistry. 2017. Vol. 56. P. 1–34. DOI: 10.1016/j.jiec.2017.06.049.
15. Kordouli E. et al. // Appl Catal B. 2017. Vol. 209. P. 12–22. DOI: 10.1016/j.apcatb.2017.02.045.
16. Yang Y. et al. // Fuel Processing Technology. 2013. Vol. 116. P. 165–174. DOI: 10.1016/j.fuproc.2013.05.008.
17. Zheng Y. et al. // Renew Energy. 2020. Vol. 154. P. 797–812. DOI: 10.1016/j.renene.2020.03.058.
18. Raikwar D. et al. // Catal Today. 2019. Vol. 325, № September 2018. P. 117–130. DOI: 10.1016/j.cattod.2018.09.039.
19. Cao X. et al. // Renew Energy. 2020. Vol. 162. P. 2113–2125. DOI: 10.1016/j.renene.2020.10.052.
20. Petropoulos G. et al. // Catal Today. 2023. Vol. 423, № May. P. 114268. DOI: 10.1016/j.cattod.2023.114268
21. Wang M. et al. // Catal Commun. 2017. Vol. 100, № July. P. 237–241. DOI: 10.1016/j.catcom.2017.07.009.
22. Yang L. et al. // Fuel Processing Technology. 2019. Vol. 187. P. 52–62. DOI: 10.1016/j.fuproc.2019.01.008.
23. Liu C.Y. et al. // Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology. Institute of Coal Chemistry, Chinese Academy of Sciences, 2016. Vol. 44, № 10. P. 1211–1216. DOI: 10.1016/s1872-5813(16)30052-4.
24. Liu Q. et al. // Cuihua Xuebao/Chinese Journal of Catalysis. 2014. Vol. 35, № 5. P. 748–756. DOI: 10.1016/s1872-2067(12)60710-4.
25. Shinkevich K.S. et al. // Appl Catal A Gen. 2022. Vol. 644, № April. P. 118801. DOI: 10.1016/j.apcata.2022.118801.
26. Priecel P. et al. // Appl Catal A Gen. 2011. Vol. 397, № 1–2. P. 127–137. DOI: 10.1016/j.apcata.2011.02.022.
27. Song W., Zhao C., Lercher J.A. // Chemistry - A European Journal. 2013. Vol. 19, № 30. P. 9833–9842. DOI: 10.1002/chem.201301005.
28. Kostyniuk A., Bajec D., Likozar B. // Renew Energy. 2021. Vol. 167. P. 409–424. DOI: 10.1016/j.renene.2020.11.098.
29. Yang J., Zuo T., Lu J. // Chin J Chem Eng. Elsevier B.V., 2021. Vol. 32. P. 224–230. DOI: 10.1016/j.cjche.2020.06.009.
30. Shetty M. et al. // J Catal. 2015. Vol. 331. P. 86–97. DOI: 10.1016/j.jcat.2015.07.034.
31. Zakaria Z.Y., Linnekoski J., Amin N.A.S. // Chemical Engineering Journal. 2012. Vol. 207–208. P. 803–813. DOI: 10.1016/j.cej.2012.07.072.
32. Xue Y.F. et al. // Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology. Institute of Coal Chemistry, Chinese Academy of Sciences, 2021. Vol. 49, № 8. P. 1111–1121. DOI: 10.1016/S1872-5813(21)60064-6.
33. Niu X. et al. // Microporous and Mesoporous Materials. 2014. Vol. 197. P. 252–261. DOI: 10.1016/j.micromeso.2014.06.027.
34. Dik P.P. et al. // Fuel. 2019. Vol. 237, № October 2018. P. 178–190. DOI: 10.1016/j.fuel.2018.10.012.
35. Hadjiivanov K., Knözinger H., Mihaylov M. // Journal of Physical Chemistry B. 2002. Vol. 106, № 10. P. 2618–2624. DOI: 10.1021/jp0132782.
36. Pan Z. et al. // Journal of Energy Chemistry. 2015. Vol. 24, № 1. P. 77–86. DOI: 10.1016/S2095-4956(15)60287-X.
37. Wang X. et al. // Fuel Processing Technology. 2017. Vol. 161. P. 52–61. DOI: 10.1016/j.fuproc.2017.03.003
38. Guevara-Lara A., Bacaud R., Vrinat M. // Appl Catal A Gen. 2007. Vol. 328, № 2. P. 99–108. DOI: 10.1016/j.apcata.2007.05.028.
39. Bendezú S. et al. // Appl Catal A Gen. 2000. Vol. 197, № 1. P. 47–60. DOI: 10.1016/S0926-860X(99)00532-3.
40. Jiménez-González C. et al. // Appl Catal A Gen. 2013. Vol. 466. P. 9–20. DOI: 10.1016/j.apcata.2013.06.017.
41. Teixeira da Silva V.L.S., Frety R., J M.S. // Ind Eng Chem Res. 1994. Vol. 33. P. 1692–1699. DOI: 10.1021/ie00031a009
42. Vroulias D. et al. // Catal Today. 2020. Vol. 355, № May 2019. P. 704–715. DOI: 10.1016/j.cattod.2019.05.066.
43. Cao X. et al. // Fuel. 2021. Vol. 298. P. 120829. DOI: 10.1016/j.fuel.2021.120829.
44. Al-Dalama K., Stanislaus A. // Thermochim Acta. 2011. Vol. 520, № 1–2. P. 67–74. DOI: 10.1016/j.tca.2011.03.017.
45. Xing G. et al. // Catal Today. 2019. Vol. 330, № January 2018. P. 109–116. DOI: 10.1016/j.cattod.2018.04.028.
46. Qu L. et al. // J Catal. 2003. Vol. 215, № 1. P. 7–13. DOI: 10.1016/S0021-9517(02)00181-1.
47. Shi C. et al. // Catal Today. 2014. Vol. 233. P. 46–52. DOI: 10.1016/j.cattod.2013.10.076.
48. Kumar P. et al. // Appl Catal A Gen. 2014. Vol. 471. P. 28–38. DOI: 10.1016/j.apcata.2013.11.021.
49. Brito J.L., Laine J., Pratt K.C. // J Mater Sci. 1989. Vol. 24, № 2. P. 425–431. DOI: 10.1007/BF01107422.
50. Wang W. yan et al. // Catal Commun. 2009. Vol. 11, № 2. P. 100–105. DOI: 10.1016/j.catcom.2009.09.003.
51. Ameen M. et al. // Ultrason Sonochem. 2019. Vol. 51. P. 90–102. DOI: 10.1016/j.ultsonch.2018.10.011.
52. Yang F. et al. // ACS Catal. 2019. Vol. 9, № 9. P. 7791–7800. DOI: 10.1021/acscatal.9b01285.
53. García-Pérez D. et al. // Molecular Catalysis. 2022. Vol. 529, № July. DOI: 10.1016/j.mcat.2022.112556.
54. He Z., Wang X. // Catalysis for Sustainable Energy. 2013. Vol. 1. P. 28–52. DOI: 10.2478/cse-2012-0004.
55. Chen J. et al. // Fuel. 2014. Vol. 129. P. 1–10. DOI: 10.1016/j.fuel.2014.03.049.
56. Kordouli E. et al. // Molecular Catalysis. 2017. Vol. 441. P. 209–220. DOI: 10.1016/j.mcat.2017.08.013.
57. Quincoces C.E. et al. // Mater Lett. 2002. Vol. 56, № November. P. 698–704. DOI: 10.1016/s0167-577x(02)00598-0
58. Ding S. et al. // Catal Commun. 2021. Vol. 149. P. 106235. DOI: 10.1016/j.catcom.2020.106235
59. Qian E.W., Chen N., Gong S. // J Mol Catal A Chem. 2014. Vol. 387. P. 76–85. DOI: 10.1016/j.molcata.2014.02.031.
60. Arend M. et al. // Appl Catal A Gen. 2011. Vol. 399, № 1–2. P. 198–204. DOI: 10.1016/j.apcata.2011.04.004.
61. Ono Y. // Catal Today. 2003. Vol. 81, № 1. P. 3–16. DOI: 10.1016/S0920-5861(03)00097-X.
62. Huber G.W., O’Connor P., Corma A. // Appl Catal A Gen. 2007. Vol. 329. P. 120–129. DOI: 10.1016/j.apcata.2007.07.002.
63. Gong S., Shinozaki A., Qian E.W. // Ind Eng Chem Res. 2012. Vol. 51, № 43. P. 13953–13960. DOI: 10.1021/ie301204u.
64. Smirnova M.Y. et al. // Catal Ind. 2013. Vol. 5, № 3. P. 253–259. DOI: 10.1134/S2070050413030112.
65. Wang C. et al. // Cuihua Xuebao/Chinese Journal of Catalysis. Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, 2013. Vol. 34, № 6. P. 1128–1138. DOI: 10.1016/S1872-2067(11)60524-X.
66. Nepomnyashchiy A.A. et al. // Catal Ind. 2023. Vol. 23, № 5. P. 25–34. DOI: 10.18412/1816-0387-2023-5-25-34.
67. Botas J.A. et al. // Appl Catal B. 2014. Vol. 145. P. 205–215. DOI: 10.1016/j.apcatb.2012.12.023.
Review
For citations:
Kovalevskaya K.S., Kukushkin R.G., Zaikina O.O., Rodina V.O., Larina T.V., Glazneva T.S., Saraev A.A., Yakovlev V.A. Deoxygenation and isomerization activity balance for NiMo/ZSM-23 catalysts as an effect of Mo/(Ni+Mo) ratio in hydroprocessing of fatty acids. Kataliz v promyshlennosti. 2024;24(5):46-60. (In Russ.) https://doi.org/10.18412/1816-0387-2024-5-46-60