

Production of synthetic high-octane gasoline from associated petroleum gas
https://doi.org/10.18412/1816-0387-2024-5-61-70
Abstract
The article proposes a method for producing high-octane gasoline from associated petroleum gas (APG), which consists of a combination of the processes of direct aromatization of APG and Fischer-Tropsch synthesis (FT). The APG aromatization process was experimentally studied in a flow-through installation at a pressure of 0,1 MPa and a temperature of 450-600 °C on a ZnO/ZSM-5/Al2O3 catalyst. It has been shown that at a temperature of 600 °C the degree of conversion of C3+ hydrocarbons is 27,8%, and the yield of aromatic hydrocarbons is 10,9 %. The synthesis of FT was studied on a hybrid Co-Al2O3/SiO2/ZSM-5/Al2O3 catalyst at a temperature of 250 °C, pressure 1,0 MPa, GHSV 1000 h-1. A pilot batch of synthetic gasoline fraction with a volume of 1 liter was produced at a pilot plant, and its main physicochemical and operational properties were analyzed. It has been shown that compounding the gasoline fraction of the FT synthesis and direct aromatization products of APG makes it possible to increase the octane number from 78,5 to 92,8 units, while the density increases from 710 to 778 kg/m3. The proposed technological solutions can be used for processing APG into high-octane synthetic gasoline using GTL modular units.
About the Authors
G. B. NarochniyRussian Federation
A. N. Saliyev
Russian Federation
I. N. Zubkov
Russian Federation
A. M. Timokhina
Russian Federation
Е. A. Bozhenko
Russian Federation
A. V. Chernysheva
Russian Federation
B. I. Kolobkov
Russian Federation
A. P. Savost'yanov
Russian Federation
R. Е. Yakovenko
Russian Federation
References
1. Khalidov I., Milovidov K., Soltakhanov A. // Heliyon. 2021. V. 7. № 7. Р. e07646. DOI: 10.1016/j.heliyon.2021.e07646.
2. Соколов М.М. // Вестник Института экономики Российской академии наук. 2019. № 4. С. 108-124. DOI: 10.24411/2073-6487-2019-10049
3. Мартынов В.Г., Лопатин А.С., Бессель В.В. // Известия Санкт-Петербургского государственного экономического университета. 2017. № 1-1 (103). С. 70-77.
4. Кирюшин П. А., Книжников А.Ю., Кочи К.В., Пузанова Т.А., Уваров С.А. Попутный нефтяной газ в России: «Сжигать нельзя, перерабатывать!» Аналитический доклад об экономических и экологических издержках сжигания попутного нефтяного газа в России. М.: Всемирный фонд дикой природы (WWF). 2013. 88 с.
5. Zayer K.K., Haghighi K.R. // Energy Equipment and Systems. 2021. V. 9. № 4. Р. 317-330. DOI: 10.22059/EES.2021.248623
6. Мордкович В.З., Синева Л.В., Кульчаковская Е.В., Асалиева Е.Ю. // Катализ в промышленности. 2015. № 5. С. 23-45. DOI: 10.18412/1816-0387-2015-5-23-45 (Mordkovich V.Z., Sineva L.V., Kulchakovskaya E.V., Asalieva E.Y. // Kataliz v promyshlennosti. 2015. V. 15. № 5. Р. 23-45. DOI: 10.18412/1816-0387-2015-5-23-45)
7. Na J., Kshetrimayum K.S., Jung I., Park S., Lee Y., Kwon O., Mo Y., Chung J., Yi J., Lee U., Han C. // Chemical Engineering and Processing-Process Intensification. 2018. V. 128. P. 63-76. DOI: 10.1016/j.cep.2018.04.013
8. Tso W.W., Niziolek A.M., Onel O., Demirhan C.D., Floudas C.A., Pistikopoulos E.N. // Computers & Chemical Engineering. 2018. V. 113. Р. 222-239. DOI: 10.1016/j.compchemeng.2018.03.003
9. Yakovenko R.E., Savost'yanov A.P., Narochniy G.B., Soromotin V.N., Zubkov I.N., Papeta O.P., Svetogorov R.D., Mitchenko S.A. // Catalysis Science & Technology. 2020. V. 10. № 22. Р. 7613-7629. DOI: 10.1039/D0CY00975J
10. Yakovenko R.E., Narochnyi G.B. Zubkov I.N., Bozhenko E.A., Kataria Y.V, Svetogorov R.D., Savost’yanov A.P. // Catalysts. 2023. V.139(9). P.1314. DOI: 10.3390/catal13091314
11. Savost’yanov A.P., Narochnyi G.B., Yakovenko R.E., Astakhov A.V., Zemlyakov N.D., Merkin A.A., Komarov A.A. // Catalysis in Industry. 2014. V. 6. P. 212-217. DOI: 10.1134/S2070050414030118
12. Lishchiner I.I., Malova O.V., Tarasov A.L. // Catalysis in Industry. 2019. V. 11. P 138-146. DOI: 10.1134/S2070050419020077
13. Дергачев А.А., Лапидус А.Л. К // Российский химический журнал. 2008. Т. 52. № 4. С. 15-21.
14. Wan H., Chitta P. // Journal of Analytical and Applied Pyrolysis. 2016. V. 121. Р. 369-375. DOI: 10.1016/j.jaap.2016.08.018
15. He P., Jarvis J.S., Meng S., Li Q., Bernard G.M., Liu L., Ma X., Jiang Z., Zeng H., Michaelis V.K., Song H. // Applied Catalysis B: Environmental. 2019. V. 250. Р. 99-111. DOI: 10.1016/j.apcatb.2019.03.011
16. Liu D., Cao L., Zhang G., Zhao L., Gao J., Xu C. // Fuel Processing Technology. 2021. V. 216. Р. 106770. DOI: 10.1016/j.fuproc.2021.106770
17. Geng R., Liu Y., Guo Y., Dong M., Wang S., Fan W., Wang J., Qin, Z. // Fuel. 2024. V. 358. Р. 130078. DOI: 10.1016/j.fuel.2023.130078
18. Tu C., Fan H., Wang D., Rui N., Du Y., Senanayake S. D., Xie Z., Nie X., Chen J.G. // Applied Catalysis B: Environmental. 2022. V. 304. Р. 120956. DOI: 10.1016/j.apcatb.2021.120956
19. Song C., Liu S., Li X., Xie S., Liu Z., Xu L. // Fuel processing technology. 2014. V. 126. Р. 60-65. DOI: 10.1016/j.fuproc.2014.04.018
20. Смышляева Ю.А., Иванчина Э.Д., Кравцов А.В., Зыонг Ч.Т., Фан Ф. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2011. Т. 318. № 3. С. 75-80.
21. Белоусов В.Н., Смородин С.Н., Смирнова О.С. Топливо и теория горения: Часть II. Теория горения. СПб: СПбГТУРП. 2011. 142 с.
22. Савенок О.В., Шарыпова Д.Д., Антониади Д.Г. // Нефть. Газ. Новации. 2013. № 10. С. 64-71.
Review
For citations:
Narochniy G.B., Saliyev A.N., Zubkov I.N., Timokhina A.M., Bozhenko Е.A., Chernysheva A.V., Kolobkov B.I., Savost'yanov A.P., Yakovenko R.Е. Production of synthetic high-octane gasoline from associated petroleum gas. Kataliz v promyshlennosti. 2024;24(5):61-70. (In Russ.) https://doi.org/10.18412/1816-0387-2024-5-61-70