Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Investigation of the main regularities of glycolysis of polycarbonate plastic during catalysis by basic agents

https://doi.org/10.18412/1816-0387-2024-5-71-80

Abstract

This research focuses on analyzing how different primary catalysts affect the glycolysis of plastic made from bisphenol A (PC) polycarbonate. It was found that the process of chemical decomposition of PC under the influence of ethylene glycol (EG) leads to the formation of products with high added value: bisphenol A (PC monomer, BPA), BPA, and ethylene carbonate or ethylene glycol co-ethers (BPA monohydroxyethyl ether, MHE-BPA; BPA bishydroxyethyl ether, BHE-BPA). A quantitative assessment of the yields of the reaction products was also carried out. The yield of products at 100% PC conversion was 33% for BPA, 50% for MHE-BPA, and 17% for BHE-BPA. The effectiveness of using various alkalis depending on the type of metal was also compared within the context of this investigation.

About the Authors

T. A. Kurneshova
Mendeleev University of Chemical Technology of Russia, Moscow
Russian Federation


V. N. Sapunov
Mendeleev University of Chemical Technology of Russia, Moscow
Russian Federation


M. P. Sergeenkova
Mendeleev University of Chemical Technology of Russia, Moscow
Russian Federation


G. V. Dzhabarov
Mendeleev University of Chemical Technology of Russia, Moscow
Russian Federation


R. A. Kozlovskiy
Mendeleev University of Chemical Technology of Russia, Moscow
Russian Federation


M. S. Voronov
Mendeleev University of Chemical Technology of Russia, Moscow
Russian Federation


E. V. Varlamova
Mendeleev University of Chemical Technology of Russia, Moscow
Russian Federation


E. P. Antoshkina
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Moscow
Russian Federation


References

1. World production and market of polycarbonate (part I) // Eurasian chemical market. – 2021. № 04, p. 2-15.

2. Demand for polycarbonates worldwide from 2011 to 2022 // Statista https://www.statista.com/statistics/750965/polycarbonates-demand-worldwide/

3. Tagaya H., Katoh K., Kadokawa J., Chiba K. Decomposition of polycarbonate in subcritical and supercritical water // Polym. Degrad. Stab. 1999. V. 64. P. 289–292. DOI: 10.1016/S0141-3910(98)00204-3.

4. Ikeda A., Ikeda A., Katoh K., Tagaya H. Monomer recovery of waste plastics by liquid phase decomposition and polymer synthesis // J. Mater. Sci. 2008. V. 43. P. 2437–2441. DOI: 10.1007/S10853-007-2030-Y.

5. Tsintzou G.P., Antonakou E.V., Achilias D.S. Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation // Journal of Hazardous Materials. 2012. V. 241–242. P.137–145. DOI: 10.1016/j.jhazmat.2012.09.027.

6. Watanabe M., Matsuo Y., Matsushita T., Inomata H., Miyake T., Hironaka K. Chemical recycling of polycarbonate in high pressure high temperature steam at 573 K // Polymer Degradation and Stability. 2009. V. 94. No 12. P. 2157-2162.

7. DOI: 10.1016/J.POLYMDEGRADSTAB.2009.09.010.

8. Song X., Liu F., Li L., Yang X., Yu S., Ge X. Hydrolysis of polycarbonate catalyzed by ionic liquid [Bmim][Ac] // Journal of Hazardous Materials. 2013. V. 244– 245. P. 204– 208. DOI: 10.1016/j.jhazmat.2012.11.044.

9. Liu M., Guo J., Gu Y., Gao J. Degradation of waste polycarbonate via hydrolytic strategy to recover monomer (bisphenol A) catalyzed by DBU-based ionic liquids under metal- and solvent-free conditions // Polymer Degradation and Stability. 2018. Vol. 157. P. 9-14. DOI: 10.1016/j.polymdegradstab.2018.09.018.

10. Iannone F., Casiello M., Monopoli A., Cotugno P. Ionic liquids/ZnO Nanoparticles as Recyclable Catalyst for Polycarbonate Depolymerization // Journal of Molecular Catalysis A: Chemical. 2016. P. 1-26.

11. DOI: 10.1016/j.molcata.2016.11.006.

12. Mormann W., Spitzer D. Ammonolysis of Polycarbonates with (Supercritical) Ammonia: An alternative for Chemical Recycling // Advances in Polycarbonates ACS Symposium Series. 2005. P. 243-261. DOI: 10.1021/bk-2005-0898.ch018.

13. Hatakeyama K., Kojima T., Funazukuri T. Chemical recycling of polycarbonate in dilute aqueous ammonia solution under hydrothermal conditions // Journal of Material Cycles and Waste Management. 2013. DOI: 10.1007/s10163-013-0151-8.

14. Kim D. Kim B., Cho Y., Han M., Kim B.S. Kinetics of polycarbonate methanolysis by a consecutive reaction model // Industrial & engineering chemistry research. 2009. V. 48. No 14. P. 6591-6599. DOI: 10.1021/ie801893v.

15. Chiu S. J., Tsai C. T., Chang Y. K. Monomer recovery from polycarbonate by methanolysis // e-Polymers. 2008. V. 8. No 1. DOI: 10.1515/epoly.2008.8.1.1516.

16. Ikenaga K., Higuchi K., Kohri S., Kusakabe K. Depolymerization of polycarbonate by methanol under pressurized microwave irradiation // IOP Conference Series: Materials Science and Engineering. – IOP Publishing. 2018. V. 458. No. 1. С. 012037. DOI: 10.1088/1757-899X/458/1/012037.

17. Guo J., Liu M., Gu Y., Wang Y., Gao J., Liu F. Efficient Alcoholysis of polycarbonate catalyzed by recyclable lewis acidic ionic liquids // Industrial & Engineering Chemistry Research. 2018. V. 57. No 32. P. 10915-10921.

18. DOI: 10.1021/acs.iecr.8b02201.

19. Liu F., Guo J., Zhao P., Jia M., Liu M., Gao J. Novel succinimide-based ionic liquids as efficient and sustainable media for methanolysis of polycarbonate to recover bisphenol A (BPA) under mild conditions // Polymer Degradation and Stability. 2019. V. 169. C. 108996. DOI: 10.1016/j.polymdegradstab.2019.108996.

20. Huang W., Wang H., Hu W., Yang D., Yu S., Liu F., Song X. Degradation of polycarbonate to produce bisphenol A catalyzed by imidazolium-based DESs under metal-and solvent-free conditions // RSC advances. 2021. V. 11. No 3. P. 1595-1604. DOI: 10.1039/D0RA09215K.

21. Song X., Hu W., Huang W.K., Wang H., Yan S., Yu S., Liu F. Methanolysis of polycarbonate into valuable product bisphenol A using choline chloride-based deep eutectic solvents as highly active catalysts // Chemical Engineering Journal. 2020. V. 388. С. 124324. DOI: 10.1016/j.cej.2020.124324.

22. Nifant'ev I. E., Pyatakov D.A., Tavtorkin A.N., Ivchenko P.V. Chemical recycling and upcycling of poly (Bisphenol A carbonate) via metal acetate catalyzed glycolysis // Polymer Degradation and Stability. 2023. V. 207. C. 110210.

23. DOI: 10.1016/j.polymdegradstab.2022.110210.

24. Quaranta E., Minischetti C.C., Tartaro G. Chemical Recycling of Poly (bisphenol A carbonate) by Glycolysis under 1, 8-Diazabicyclo [5.4. 0] undec-7-ene Catalysis // ACS omega. 2018. V. 3. No 7. P. 7261-7268.

25. DOI: 10.1021/acsomega.8b01123.

26. Kurneshova T.A., Sapunov V.N., Dzhabarov G.V., Inutkina A.S., Voronov M.S., Makarova E.M., Korovina N.S. The study depolymerization of polycarbonate waste with ethylene glycol // Chim. promishlennost segodnya. 2021. №2. P. 54–61.

27. Kurneshova T.A., Dzhabarov G.V., Sapunov V.N., Kozlovskiy R.A., Voronov M.S., Varlamova E.V., Sergeenkova M.P., Shafev D.N. Kinetic basis of polycarbonate glycolysis under zinc chloride catalysis // Chemical Papers. 2023. DOI: 10.1007/s11696-023-03225-0.

28. Oku A., Tanaka S., Hata S. Chemical conversion of poly (carbonate) to bis (hydroxyethyl) ether of bisphenol A. An approach to the chemical recycling of plastic wastes as monomers // Polymer. 2000. V. 41. No 18. P. 6749-6753.

29. DOI: 10.1016/S0032-3861(00)00014-8.

30. Lin C.H., Lin Y.Y., Liao W.Z., Dai S. Novel chemical recycling of polycarbonate (PC) waste into bis-hydroxyalkyl ethers of bisphenol A for use as PU raw materials // Green Chemistry. 2007. V. 9. No 1. P. 38-43.

31. DOI: 10.1039/b609638g.

32. Emami S., Alavi Nikje M.M. Benign and ecofriendly depolymerization of polycarbonate wastes into valuable diols using micro- and nano‑ TiO2 as the solid supports // Iranian Polymer Journal. 2018. DOI: 10.1007/s13726-018-0607-8.

33. Hong Y., Su G., Shen-feng Y., Zhi-rong C. Synthesis of bis(hydroxyethyl ether) of bisphenol A by reacting bisphenol A with ethylene carbonate // Journal of Zhejiang University. 2014. V.48. No 3. P. 521-526.

34. DOI: 10.3785/j.issn.1008-973X.2014.03.021.

35. Hait S.B. and Sivaram S. Synthesis of bis(hydroxyethyl ether)s of Aromatic Dihydroxy Compounds and Poly(ether-carbonate)s with Bisphenol A // Polymer International. 1998. V.47. P. 439-444.

36. DOI: 10.1002/(sici)1097-0126(199812)47:4<439:: aid-pi80>3.0.co;2-6.

37. A. Oku, S. Tanaka, S. Hata. (2000) Chemical conversion of poly(carbonate) to bis(hydroxyethyl) ether of bisphenol A. An approach to the chemical recycling of plastic wastes as monomers // Polymer. 2000. V.41. P.6749–6753.

38. DOI: 10.1016/S0032-3861(00)00014-8.

39. Schmid R., Miah A. M., Sapunov V. N. A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy-entropy compensation and Born radii) // Chem. Phys. 2000. V.2. P. 97-102.

40. DOI: 10.1039/a907160a.

41. Kim D., Kim B.K., Cho Y., Han M., Kim, B.S. Kinetics of polycarbonate glycolysis in ethylene glycol // Ind. Eng. Chem. Res. 2009. V. 48. P. 685–691. DOI: 10.1021/ie8010947.


Review

For citations:


Kurneshova T.A., Sapunov V.N., Sergeenkova M.P., Dzhabarov G.V., Kozlovskiy R.A., Voronov M.S., Varlamova E.V., Antoshkina E.P. Investigation of the main regularities of glycolysis of polycarbonate plastic during catalysis by basic agents. Kataliz v promyshlennosti. 2024;24(5):71-80. (In Russ.) https://doi.org/10.18412/1816-0387-2024-5-71-80

Views: 152


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)