Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Catalysts based on vanadium-containing heteropoly compounds: influence of the outer-sphere cation on physicochemical and catalytic properties of Si-W-V heteropolyacid

https://doi.org/10.18412/1816-0387-2024-6-3-12

Abstract

The effect of the introduction of catalytically active vanadium(V) atoms on the physicochemical properties of silicotungstic heteropolyacid has been studied. The insertion of vanadium(V) atoms into the framework of monovacant lacunar W-containing heteropolyanions in the form of a H6V10O28 solution prepared by an environmentally friendly peroxide method has been shown to ensure the formation of a mixed Si-W-V heteropolyanions while maintaining the integrity of the structure. It has been demonstrated that the partial replacement of protons with large cations, such as Cs+ and nBu4N+, leads to the precipitation of insoluble acid salts of the composition A4,5H0,5SiW11VO40, the properties of which vary significantly depending on the type of introduced counterion (A+). The textural characteristics of the synthesized salts have been compared, the TG/DTG/DSC profiles have been obtained, and a phase composition has been analyzed. Characterization of samples after hydrothermal treatment by IR, XRD, and ICP-AES methods has proved the high stability of the synthesized salts. The samples have demonstrated catalytic activity in the oxidation of 5-hydroxymethylfurfural in an aqueous medium, providing the formation of 2,5-diformylfuran with a yield of up to 89%, and the possibility of reusing.

About the Authors

Yu. A. Rodikova
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


T. Y. Kardash
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


E. G. Zhizhina
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


References

1. Ang T.-Z., Salem M., Kamarol M., Das H.S., Nazari M.A., Prabaharan N. // Energy Strategy Reviews. 2022. V. 43. ID 100939. https://doi.org/10.1016/j.esr.2022.100939

2. Irmak S. in Biomass Volume Estimation and Valorization for Energy (Ed.Tumuluru, J.S.). InTech, 2017.

3. Kucherov F.A., Romashov L.V., Galkin K.I., Ananikov V.P. // ACS Sustainable Chem. Eng. 2018. V. 6. № 7. P. 8064–8092. https://doi.org/10.1021/acssuschemeng.8b00971

4. Fan W., Verrier C., Queneau Y., Popowycz F. // Curr. Org. Synth. 2019. V. 16. № 4. P. 583–614. https://doi.org/10.2174/1570179416666190412164738

5. Xia H., Xu S., Hu H., An J., Li C. // RSC Adv. 2018. V. 8. № 54. P. 30875–30886. https://doi.org/10.1039/C8RA05308A

6. Ma J., Du Z., Xu J., Chu Q., Pang Y. // ChemSusChem. 2011. V. 4. № 1. P. 51–54. https://doi.org/10.1002/cssc.201000273

7. Derflinger C., Kamm B., Paulik C. // International Journal of Biobased Plastics. 2021. V. 3. № 1. P. 29–39. https://doi.org/10.1080/24759651.2021.1877025

8. Girka Q., Hausser N., Estrine B., Hoffmann N., Le Bras J., Marinković S., Muzart J. // Green Chem. 2017. V. 19. № 17. P. 4074–4079. https://doi.org/10.1039/C7GC01534H

9. Dutta S., Wu L., Mascal M. // Green Chem. 2015. V. 17. P. 3737–3739. https://doi.org/10.1039/C5GC00936G

10. Gao X., Li Z., Zhang D., Zhao X., Wang Y. // Chin. J. Chem. Eng. 2023. V. 53. P. 310–316. https://doi.org/10.1016/j.cjche.2021.12.026

11. Xu Y., Jia X., Ma J., Gao J., Xia F., Li X., Xu J. // ACS Sustainable Chem. Eng. 2018. V. 6. № 3. P. 2888–2892. https://doi.org/10.1021/acssuschemeng.7b03913

12. Xu Y., Jia X., Ma J., Gao J., Xia F., Li X., Xu J. // Green Chem. 2018. V. 20. № 12. P. 2697–2701. https://doi.org/10.1039/C8GC00947C

13. Amarasekara A.S., Green D., Williams L.T.D. // Eur. Polym. J. 2009. V. 45. № 2. P. 595–598. https://doi.org/10.1016/j.eurpolymj.2008.11.012

14. Delidovich I., Hausoul P.J.C., Deng L., Pfutzenreuter R., Rose M., Palkovits R. // Chem. Rev. 2016. V. 116. № 3. P. 1540–1599. https://doi.org/10.1021/acs.chemrev.5b00354

15. Vijjamarri S., Streed S., Serum E.M., Sibi M.P., Du G. // ACS Sustainable Chem. Eng. 2018. V. 6. № 2. P. 2491–2497. https://doi.org/10.1021/acssuschemeng.7b03932

16. Dhers S., Vantomme G., Avérous L. // Green Chem. 2019. V. 21. P. 1596–1601. https://doi.org/10.1039/C9GC00540D

17. Ma J., Wang M., Du Z., Chen C., Gao J., Xu J. // Polym. Chem. 2012. V. 3. P. 2346–2349. https://doi.org/10.1039/C2PY20367G

18. Danielli C., van Langen L., Boes D., Asaro F., Anselmi S., Provenza F., Renzi M., Gardossi L. // RSC Adv. 2022. V. 12. P. 35676–35684. https://doi.org/10.1039/D2RA07153C

19. Pal P., Saravanamurugan S. // ChemSusChem. 2019. V. 12. № 1. P. 145–163. https://doi.org/10.1002/cssc.201801744

20. Derflinger C., Kamm B., Meissner G., Spod H., Paulik C. // ChemistrySelect. 2023. V. 8. № 38. ID e202302056. https://doi.org/10.1002/slct.202302056

21. Tong X., Sun Y., Bai X., Li Y. // RSC Adv. 2014. V. 4. P. 44307–44311. https://doi.org/10.1039/C4RA07181F

22. Chernyshev V.M., Kravchenko O.A., Ananikov V.P. // Russ. Chem. Rev. 2017. V. 86. № 5. P. 357–387. https://doi.org/10.1070/RCR4700

23. Chen Y., Li F., Li S., Zhang L., Sun M. // Inorg. Chem. Commun. 2022. V. 135, ID 109084. https://doi.org/10.1016/j.inoche.2021.109084

24. Woźniak B.M.J., Staszak K., Bajek A., Pniewski F., Jastrząb R., Staszak M., Tylkowski B., Wieszczycka K. // Coord. Chem. Rev. 2023. V. 493, ID 215306.

25. https://doi.org/10.1016/j.ccr.2023.215306

26. Wang J., Fu X., Wang J., Hu C. // Sci. China Ser. B-Chem. 2009. V. 52. P. 2096–2105. https://doi.org/10.1007/s11426-009-0191-z

27. Yan S., Li Y., Li P., Jia T., Wang S., Wang X. // RSC Adv. 2018. V. 8. P. 3499–3511. https://doi.org/10.1039/c7ra12842h

28. Chen R., Xin J., Yan D., Dong H., Lu X., Zhang S. // ChemSusChem. 2019. V. 12. P. 2715–2724. https://doi.org/10.1002/cssc.201900651

29. Lan J., Lin J., Chen Z., Yin G. // ACS Catal. 2015. V. 5. P. 2035–2041. https://doi.org/10.1021/cs501776n

30. Odyakov V.F., Zhizhina E.G., Rodikova Y.A., Gogin L.L. // Eur. J. Inorg. Chem. 2015. V. 2015. № 22. P. 3618–3631. https://doi.org/10.1002/ejic.201500359

31. SU патент № 1782934 A1, опубл. 1992.

32. Subramanian S., Noh J.S., Schwarz J.A. // J. Catal. 1988. V. 114. № 9. P. 433–439. https://doi.org/10.1016/0021-9517(88)90046-2

33. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117

34. Громов Н.В., Медведева Т.Б., Таран О.П., Тимофеева М.Н., Пармон В.Н. // Катализ в промышленности. 2020. Т. 20. № 3. С.234–242. https://doi.org/10.18412/1816-0387-2020-3-234-242

35. Bielański A., Datka J., Gil B., Małecka-Lubańska A., Micek-Ilnicka A. // Catal. Lett. 1999. V. 57. P. 61–64. https://doi.org/10.1023/A:1019070810045

36. Huang T., Tian N., Wu Q., Yan Y., Yan W. // Mater. Chem. Phys. 2015. V. 165. P. 34–38. https://doi.org/10.1016/j.matchemphys.2015.08.026

37. Fournier M., Thouvenot R., Rocchiccioli-Deltcheff C. // J. Chem. Soc., Faraday Trans. 1991. V. 87. P. 349–356. https://doi.org/10.1039/FT9918700349

38. Barats-Damatov D., Shimon L.J.W., Feldman Y., Bendikov T., Neumann R. // Inorg. Chem. 2015. V. 54. № 2. P. 628–634. https://doi.org/10.1021/ic502541b

39. Boeyens J.C.A., McDougal G.J., Smit J. van R. // J. Solid State Chem. 1976. V. 18. № 2. P. 191–199. https://doi.org/10.1016/0022-4596(76)90095-5

40. Berndt S., Herein D., Zemlin F., Beckmann E., Weinberg G., Schütze J., Mestl G., Schlögl R. // Berichte der Bunsengesellschaft für Physikalische Chemie. 1998. V. 102. № 5. P. 763–774. https://doi.org/10.1002/bbpc.19981020510

41. Jing F., Katryniok B., Dumeignil F., Bordes-Richard E. // J. Catal. 2014. V. 309. P. 121–135. https://doi.org/10.1016/j.jcat.2013.09.014

42. Alhanash A., Kozhevnikova E.F., Kozhevnikov I.V. // Appl. Catal. A: Gen. 2010. V. 378. P. 11–18. https://doi.org/10.1016/j.apcata.2010.01.043

43. Vilanculo C.B., da Silva M.J., Rodrigues A.A., Ferreira S.O., da Silva R.C. // RSC Adv. 2021. V. 11. P. 24072–24085. https://doi.org/10.1039/D1RA04191F


Review

For citations:


Rodikova Yu.A., Kardash T.Y., Zhizhina E.G. Catalysts based on vanadium-containing heteropoly compounds: influence of the outer-sphere cation on physicochemical and catalytic properties of Si-W-V heteropolyacid. Kataliz v promyshlennosti. 2024;24(6):3-12. (In Russ.) https://doi.org/10.18412/1816-0387-2024-6-3-12

Views: 148


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)