

Catalysts based on vanadium-containing heteropoly compounds: influence of the outer-sphere cation on physicochemical and catalytic properties of Si-W-V heteropolyacid
https://doi.org/10.18412/1816-0387-2024-6-3-12
Abstract
The effect of the introduction of catalytically active vanadium(V) atoms on the physicochemical properties of silicotungstic heteropolyacid has been studied. The insertion of vanadium(V) atoms into the framework of monovacant lacunar W-containing heteropolyanions in the form of a H6V10O28 solution prepared by an environmentally friendly peroxide method has been shown to ensure the formation of a mixed Si-W-V heteropolyanions while maintaining the integrity of the structure. It has been demonstrated that the partial replacement of protons with large cations, such as Cs+ and nBu4N+, leads to the precipitation of insoluble acid salts of the composition A4,5H0,5SiW11VO40, the properties of which vary significantly depending on the type of introduced counterion (A+). The textural characteristics of the synthesized salts have been compared, the TG/DTG/DSC profiles have been obtained, and a phase composition has been analyzed. Characterization of samples after hydrothermal treatment by IR, XRD, and ICP-AES methods has proved the high stability of the synthesized salts. The samples have demonstrated catalytic activity in the oxidation of 5-hydroxymethylfurfural in an aqueous medium, providing the formation of 2,5-diformylfuran with a yield of up to 89%, and the possibility of reusing.
About the Authors
Yu. A. RodikovaRussian Federation
T. Y. Kardash
Russian Federation
E. G. Zhizhina
Russian Federation
References
1. Ang T.-Z., Salem M., Kamarol M., Das H.S., Nazari M.A., Prabaharan N. // Energy Strategy Reviews. 2022. V. 43. ID 100939. https://doi.org/10.1016/j.esr.2022.100939
2. Irmak S. in Biomass Volume Estimation and Valorization for Energy (Ed.Tumuluru, J.S.). InTech, 2017.
3. Kucherov F.A., Romashov L.V., Galkin K.I., Ananikov V.P. // ACS Sustainable Chem. Eng. 2018. V. 6. № 7. P. 8064–8092. https://doi.org/10.1021/acssuschemeng.8b00971
4. Fan W., Verrier C., Queneau Y., Popowycz F. // Curr. Org. Synth. 2019. V. 16. № 4. P. 583–614. https://doi.org/10.2174/1570179416666190412164738
5. Xia H., Xu S., Hu H., An J., Li C. // RSC Adv. 2018. V. 8. № 54. P. 30875–30886. https://doi.org/10.1039/C8RA05308A
6. Ma J., Du Z., Xu J., Chu Q., Pang Y. // ChemSusChem. 2011. V. 4. № 1. P. 51–54. https://doi.org/10.1002/cssc.201000273
7. Derflinger C., Kamm B., Paulik C. // International Journal of Biobased Plastics. 2021. V. 3. № 1. P. 29–39. https://doi.org/10.1080/24759651.2021.1877025
8. Girka Q., Hausser N., Estrine B., Hoffmann N., Le Bras J., Marinković S., Muzart J. // Green Chem. 2017. V. 19. № 17. P. 4074–4079. https://doi.org/10.1039/C7GC01534H
9. Dutta S., Wu L., Mascal M. // Green Chem. 2015. V. 17. P. 3737–3739. https://doi.org/10.1039/C5GC00936G
10. Gao X., Li Z., Zhang D., Zhao X., Wang Y. // Chin. J. Chem. Eng. 2023. V. 53. P. 310–316. https://doi.org/10.1016/j.cjche.2021.12.026
11. Xu Y., Jia X., Ma J., Gao J., Xia F., Li X., Xu J. // ACS Sustainable Chem. Eng. 2018. V. 6. № 3. P. 2888–2892. https://doi.org/10.1021/acssuschemeng.7b03913
12. Xu Y., Jia X., Ma J., Gao J., Xia F., Li X., Xu J. // Green Chem. 2018. V. 20. № 12. P. 2697–2701. https://doi.org/10.1039/C8GC00947C
13. Amarasekara A.S., Green D., Williams L.T.D. // Eur. Polym. J. 2009. V. 45. № 2. P. 595–598. https://doi.org/10.1016/j.eurpolymj.2008.11.012
14. Delidovich I., Hausoul P.J.C., Deng L., Pfutzenreuter R., Rose M., Palkovits R. // Chem. Rev. 2016. V. 116. № 3. P. 1540–1599. https://doi.org/10.1021/acs.chemrev.5b00354
15. Vijjamarri S., Streed S., Serum E.M., Sibi M.P., Du G. // ACS Sustainable Chem. Eng. 2018. V. 6. № 2. P. 2491–2497. https://doi.org/10.1021/acssuschemeng.7b03932
16. Dhers S., Vantomme G., Avérous L. // Green Chem. 2019. V. 21. P. 1596–1601. https://doi.org/10.1039/C9GC00540D
17. Ma J., Wang M., Du Z., Chen C., Gao J., Xu J. // Polym. Chem. 2012. V. 3. P. 2346–2349. https://doi.org/10.1039/C2PY20367G
18. Danielli C., van Langen L., Boes D., Asaro F., Anselmi S., Provenza F., Renzi M., Gardossi L. // RSC Adv. 2022. V. 12. P. 35676–35684. https://doi.org/10.1039/D2RA07153C
19. Pal P., Saravanamurugan S. // ChemSusChem. 2019. V. 12. № 1. P. 145–163. https://doi.org/10.1002/cssc.201801744
20. Derflinger C., Kamm B., Meissner G., Spod H., Paulik C. // ChemistrySelect. 2023. V. 8. № 38. ID e202302056. https://doi.org/10.1002/slct.202302056
21. Tong X., Sun Y., Bai X., Li Y. // RSC Adv. 2014. V. 4. P. 44307–44311. https://doi.org/10.1039/C4RA07181F
22. Chernyshev V.M., Kravchenko O.A., Ananikov V.P. // Russ. Chem. Rev. 2017. V. 86. № 5. P. 357–387. https://doi.org/10.1070/RCR4700
23. Chen Y., Li F., Li S., Zhang L., Sun M. // Inorg. Chem. Commun. 2022. V. 135, ID 109084. https://doi.org/10.1016/j.inoche.2021.109084
24. Woźniak B.M.J., Staszak K., Bajek A., Pniewski F., Jastrząb R., Staszak M., Tylkowski B., Wieszczycka K. // Coord. Chem. Rev. 2023. V. 493, ID 215306.
25. https://doi.org/10.1016/j.ccr.2023.215306
26. Wang J., Fu X., Wang J., Hu C. // Sci. China Ser. B-Chem. 2009. V. 52. P. 2096–2105. https://doi.org/10.1007/s11426-009-0191-z
27. Yan S., Li Y., Li P., Jia T., Wang S., Wang X. // RSC Adv. 2018. V. 8. P. 3499–3511. https://doi.org/10.1039/c7ra12842h
28. Chen R., Xin J., Yan D., Dong H., Lu X., Zhang S. // ChemSusChem. 2019. V. 12. P. 2715–2724. https://doi.org/10.1002/cssc.201900651
29. Lan J., Lin J., Chen Z., Yin G. // ACS Catal. 2015. V. 5. P. 2035–2041. https://doi.org/10.1021/cs501776n
30. Odyakov V.F., Zhizhina E.G., Rodikova Y.A., Gogin L.L. // Eur. J. Inorg. Chem. 2015. V. 2015. № 22. P. 3618–3631. https://doi.org/10.1002/ejic.201500359
31. SU патент № 1782934 A1, опубл. 1992.
32. Subramanian S., Noh J.S., Schwarz J.A. // J. Catal. 1988. V. 114. № 9. P. 433–439. https://doi.org/10.1016/0021-9517(88)90046-2
33. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
34. Громов Н.В., Медведева Т.Б., Таран О.П., Тимофеева М.Н., Пармон В.Н. // Катализ в промышленности. 2020. Т. 20. № 3. С.234–242. https://doi.org/10.18412/1816-0387-2020-3-234-242
35. Bielański A., Datka J., Gil B., Małecka-Lubańska A., Micek-Ilnicka A. // Catal. Lett. 1999. V. 57. P. 61–64. https://doi.org/10.1023/A:1019070810045
36. Huang T., Tian N., Wu Q., Yan Y., Yan W. // Mater. Chem. Phys. 2015. V. 165. P. 34–38. https://doi.org/10.1016/j.matchemphys.2015.08.026
37. Fournier M., Thouvenot R., Rocchiccioli-Deltcheff C. // J. Chem. Soc., Faraday Trans. 1991. V. 87. P. 349–356. https://doi.org/10.1039/FT9918700349
38. Barats-Damatov D., Shimon L.J.W., Feldman Y., Bendikov T., Neumann R. // Inorg. Chem. 2015. V. 54. № 2. P. 628–634. https://doi.org/10.1021/ic502541b
39. Boeyens J.C.A., McDougal G.J., Smit J. van R. // J. Solid State Chem. 1976. V. 18. № 2. P. 191–199. https://doi.org/10.1016/0022-4596(76)90095-5
40. Berndt S., Herein D., Zemlin F., Beckmann E., Weinberg G., Schütze J., Mestl G., Schlögl R. // Berichte der Bunsengesellschaft für Physikalische Chemie. 1998. V. 102. № 5. P. 763–774. https://doi.org/10.1002/bbpc.19981020510
41. Jing F., Katryniok B., Dumeignil F., Bordes-Richard E. // J. Catal. 2014. V. 309. P. 121–135. https://doi.org/10.1016/j.jcat.2013.09.014
42. Alhanash A., Kozhevnikova E.F., Kozhevnikov I.V. // Appl. Catal. A: Gen. 2010. V. 378. P. 11–18. https://doi.org/10.1016/j.apcata.2010.01.043
43. Vilanculo C.B., da Silva M.J., Rodrigues A.A., Ferreira S.O., da Silva R.C. // RSC Adv. 2021. V. 11. P. 24072–24085. https://doi.org/10.1039/D1RA04191F
Review
For citations:
Rodikova Yu.A., Kardash T.Y., Zhizhina E.G. Catalysts based on vanadium-containing heteropoly compounds: influence of the outer-sphere cation on physicochemical and catalytic properties of Si-W-V heteropolyacid. Kataliz v promyshlennosti. 2024;24(6):3-12. (In Russ.) https://doi.org/10.18412/1816-0387-2024-6-3-12