

The surface of nanostructured (Ni)CoAl2O4 spinel and their study in dry reforming of methane
https://doi.org/10.18412/1816-0387-2024-6-35-47
Abstract
NixCo1-xAl2O4 (x = 0–0.5) catalysts were prepared by the co-precipitation from solution of Ni, Co and Al nitrates. The dry gel was heated at 700 °C in air and resulting alumina modified by nickel and cobalt ions is formed with spinel structure. The in situ X-ray diffraction study of these precursors in the reduction by a H2-containing gas mixture at 700 °C and ex situ after preliminary reduction in a H2-containing gas mixture and further work under reaction medium conditions showed that ensembles of Ni-Co alloy particles 3-4 nm in size are formed on the spinel surface. The influence of the composition of the catalysts and the duration of their testing on the catalytic properties in the dry reforming of methane reaction (DRM) was studied. The Ni0.35Co0.65Al2O4 catalyst is stable in the DRM for 20 hours with CH4 conversion of 76 % and an H2 yield of 42 % (T = 700 °C, t = 30 ms). The high catalytic activity of the obtained catalysts in DRM is due to the formation of highly dispersed (3–4 nm) nanoparticles of the Ni-Co alloy an active phase in an amount of 17–18 wt. % on the initially large specific surface area of a spinel, stabilized by nickel and cobalt ions, and possessing mobile bulk oxygen under reducing reaction conditions.
About the Authors
A. A. ShutilovRussian Federation
M. N. Simonov
Russian Federation
V. E. Fedorova
Russian Federation
A. S. Marchuk
Russian Federation
I. P. Prosvirin
Russian Federation
E. M. Sadovskaya
Russian Federation
N. F. Eremeev
Russian Federation
G. A. Zenkovets
Russian Federation
References
1. Alipour Z, Borugadda, Wang H., Dalai A. K. // Chemical Engineering Journal. 2023.V. 452 .P. 139416, https://doi.org/10.1016/j.cej.2022.139416
2. Yentekakis I. V., Panagiotopoulou P., Artemakis G.// Appl. Catal. B: Environ. 2021. V. 296. P. 120210, https://doi.org/10.1016/j.apcatb.2021.120210
3. Александрова В. Д. // Международный журнал гуманитарных и естественных наук. 2019. № 5–1. URL: https://cyberleninka.ru/article/n/sovremennaya- kontseptsiya-tsirkulyarnoy-ekonomiki.
4. Yentekakis I.V., Goula G., Hatzisymeon M., Betsi-Argyropoulou I., Botzolaki G., Kousi K., Kondarides D.I., Taylor M.J., Parlett C.M.A., Osatiashtiani A., Kyriakou G., Holgado J.P., Lambert R.M. // Appl. Catal. B: Environ. 2019. V. 243 P. 490–501. https://doi.org/10.1016/j.apcatb.2018.10.048.
5. Abdulrasheed A., Jalil A.A., Gambo Y., Ibrahim M., Hambali H.U., Shahul Hamid M.Y. // Renewable Sustainable Energy Rev. 2019 V. 108. P. 175–193. https://doi.org/10.1016/j.rser.2019.03.054.
6. Song Y., Ozdemir E., Ramesh S., Adishev A., Subramanian S., Harale A., Albuali M., Fadhel B.A., Jamal A., Moon D., Choi S.H., Yavuz C.T. // Science. 2020. V. 367. P. 777–781 https://science.sciencemag.org/content/367/6479/777 /tab-pdf.
7. Pakhare D., Spivey J. // Chem. Soc. Rev. 2014. V. 43. P. 7813–7837. https://doi.org/10.1039/ C3CS60395D.
8. Tsoukalou A., Imtiaze Q., Kim S.M., Abdala P.-M., Yoon S., Muller C.-R. // J. Catal. 2016 V. 343. P. 208-214. http://dx.doi.org/10.1016/j.jcat.2016.03.018
9. Liu Z., Zang F., Rui N., Li X., Lin L., Betancourt L.E., Sun D., Xu W., Gen Y., Attenkofer K., Idriss H., Rodriguez J.A., Senanayake S.D. // ACS Catal. 2019. V. 9. P. 3349–3359. https:// 10.1021/Acscatal.8B05162.
10. Sharifianjazi F., Esmaeilkhanian A., Bazli L., Eskandarinezhad S., Khaksar S., Shafiee P., Yusuf M., Abdullah B., Salahshour P., Sadeghi F. // Int. J. Hydrog. Energy. 2022. V. 47. P. 42213–42233. https://doi.org/ 10.1016/j.ijhydene.2021.11.172
11. Rezaei M., Alavi S.M., Sahebdelfar S., Yan Z.F. // J. Nat. Gas. Chem. 2006. V. 15. P. 327–334. https://doi.org/10.1016/S1003-9953(07)60014-0.
12. Barama S., Dupeyrat-Batiot C., Capron M., Bordes-Richard E., Bakhti-Mohammedi O. // Catal. Today. 2009. V. 141. P. 385–392. https://doi.org/10.1016/j.cattod.2008.06.025.
13. Ferreira-Aparicio P., Guerrero-Ruiz A., Rodriquez-Ramos I. // Appl. Catal. A: Gen. 1998. V. 170. P. 177–187. https://doi.org/10.1016/S0926-860X(98) 00048-9.
14. Bitters J. S., T. He, Nestler E., Senanayake S.D., Chen J. G., Zhang C.// Journal of Energy Chemistry 68 (2022) 124–142. https://doi.org/10.1016/j.jechem/2021.11.041
15. Goula M.A., Charisiou N.D., Siakavelas G., Tzounis L., Tsiaoussis I., Panagiotopoulou P., Goula G., Yentekakis I.V. // Int. J. Hydrog. Energy. 2017. V 42. P. 13724–13740. https://doi.org/ 10.1016/j.ijhydene.2016.11.196
16. Sache E. Le, Pastor-Perez L., Watson D., Sepúlveda-Escribano A., Reina T.R. // Appl. Catal. B: Environ. 2018. V. 236. P. 458–465. https://doi.org/10.1016/j.apcatb.2018.05.051
17. Serrano-Lotina A., Daza L. // Appl. Catal. A Gen. 2014. V. 474. P. 107–113. https:// doi.org/10.1016/j.apcata.2013.08.027.
18. Stroud T., Smith T.J., Le Sach´e E., Santos J.L., Centeno M.A., Arellano-Garcia H., Odriozola J.A., Reina T.R. // Appl. Catal. B: Environ. 2018. V. 224. P. 125–135. https://doi.org/10.1016/j.apcatb.2017.10.047.
19. Zhang W.D., Liu B.S., Tian Y.L. // Catal. Comm. 2007. V. 8. P. 661–667. https://doi.org/10.1016/j.catcom.2006.08.020
20. Amin M.H., Mantri K., Newnham J., Tardio J., Bhargava S.K. // Appl. Catal. B: Environ. 2012. V. 119. P. 217–226. https://doi.org/10.1016/ j.apcatb.2012.02.039
21. Fakeeha A.H., Al Fatesh A.S., Ibrahim A.A., Kurdi A.N., Abasaeed A.E. // ACS Omega. 2021.V. 6. P. 1280–1288, https://doi.org/10.1021/ acsomega.0c04731.
22. Sengupta S., Ray K., Deo G. // Int. J. Hydrog. Energy. 2014. V. 39. P. 11462–11472, http://dx.doi.org/ 10.1016/j.ijhydene.2014.05.058
23. Gonzalez-delaCruz V.M., Pereniguez R., Ternero F., Holgado J.P., Caballero A. // J. Phys. Chem. C. 2012. V. 116. P. 2919–2926. https://doi.org/10.1021/jp2092048
24. Zhang J., Wang H., Dalai A. K. // Applied Catalysis A: General. 2008. V. 339 P. 121–129. https://doi.org/10.1016/j.apcata.2008.01.027
25. Foo S.Y., Cheng C.K., Nguyen T-H., Adesina A.A. // Ind. Eng. Chem. Res. 2010. V. 49. P. 10450–10458. https://doi.org/10.1021/ie100460g
26. Wu Z., Yang B., Miao S., Liu W., Xie J., Lee S., Pellin M.J., Xiao D., Su D., Ma D. // ACS Catal. 2019. V. 9. P. 2693–2700, https://doi.org/10.1021/ acscatal.8b02821.
27. Sengupta S., Ray K., Deo G. // Int. J. Hydrog. Energy. 2014. V. 39. P. 11462–11472. https://doi.org/10.1016/j. ijhydene.2014.05.058.
28. Kumari R., Sengupta S. // Int. J. Hydrog. Energy. 2020. V. 45. P. 22775–22787. https://doi.org/10.1016/j.ijhydene.2020.06.150.
29. Li H., Shin K., Henkelman G. //J. Chem. Phys. 2018. V. 149. P. 174705. https://doi.org/10.1063/1.5053894
30. Yu W., Porosoff M.-D., Chen J.-G. // Chem. Rev. 112 (2012) 5780–5817. https://doi.org/10.1021/cr300096b
31. Jo D.-Y., Lee M.-W., Kim C.-H., Choung J.-W., Ham H.-C., Lee K.-Y. // Catal. Today. 2021. V. 359. P. 52–64. https://doi.org/10.1016/j.cattod.2019.05.031
32. Erdogan B., Arbag H., Yasyerli N. //. Int. J. Hydrog.Enerdy 2018. V. 48. P. 1396–1405. https://doi.org/10.1016/j.ijhydene.2017.11.127
33. Zhang J., Wang H., Dalai A. K. // Journal of Catalysis 2007. V. 249. P. 300–310. https://doi.org/10.1016/j.jcata.2007.05.004
34. San Jose-Alonso D., Juadry J., Illan-Gomez M.J., Roman-Martínez M.C. // Appl. Catal. A: Gen. 2009. V. 371. P. 54–59. https://doi.org/10.1016/j.apcata.2009.09.026.
35. Chen Y., Ren J. // Catal. Lett. 1994. V. 29. P. 39–48. https://doi.org/10.1007/BF00814250
36. Dekkar S., Tezkratt S., Sellam D., Ikkour K., Parkhomenko K., Martinez-Martin A., Roger A.C. // Catal. Lett. 2020. V. 150, P. 2180–2199. http://dx.doiorg /10.1007/s10562-020-03120-3.
37. Sharifi M., Haghighi M., Rahmani F., Karimipour S. // J. Natural Gas Sci. and Eng. 2014. V. 21. P. 993–1004, http://dx.doiorg/10.1016/jjngse.201410.030
38. Hayakawa T., Harihara H., Andersen A.G., Suzuki K., Yasuda H., Tsunoda T., Hamakawa S., York A.P.E., Yoon Y.S., Shimizu M., Takehira K. .//.Appl. Catal. A: Gen. 1997. V. 149. P. 391–410. https://doi.org/10.1016/s0926-860x(96)00274-8
39. Hayakawa T., Suzuki S., Nakamura J., Uchijima T., Hamakawa S., Suzuki K., Shishido T., Takehira K. // Applied Catalysis A: Gen. 1999. V. 183. P. 273–285. https://doi.org/10.1016/s0926-860x(99)00071-x
40. Matus E. V., Nefedova D. V., Sukhova O. B., Ismagilov I. Z., Ushakov V. A., Yashnik S. A., Nikitin A. P., Kerzhentsev M. A., Ismagilov Z. R. //Kinetics and Catalysis. 2019. V. 60. P. 496–507. https://doi.org/10.1134/S0023158419040074
41. Bruker AXS. TOPAS V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual; Bruker AXS: Karlsruhe, Germany, 2008; Available online: http://algol.fis.uc.pt/jap/TOPAS%204-2%20Users%20Manual.pdf (accessed on 8 May 2020)
42. Database: Inorganic Crystal Structure Database, ICSD. In Release 2008. Fashinformationszentrum Karsruhe D #8211 1754 Eggenstein #8211 Leopoldshafen, Germany, 2008.
43. Moudler J., Stickle W., Sobol P., Bomben K., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp.: Eden. Prairie, MN, 1992.
44. Scofield J. H., J. // Electron Spectrosc. Relat. Phenom. 1976 V. 8. P. 129–137. https://doi.org/10.1016/0368-2048(76)80015-1
45. Kwok R. Free, fully featured, software for the analysis of XPS spectra. November 25, 2023. http://xpspeak.software.informer.com/4.1/
46. Садыков В. А., Садовская Е. М., Уваров Н. Ф. // Электрохимия. 2015. Т. 51. № 5, с. 529–539 https://doi.org/ 10.7868/S0424857015050114
47. Sadykov V., Sadovskaya E., Bobin A., Kharlamova T., Uvarov N., Ulikhin A., Argirusis C., Sourkouni G., Stathopoulos V. // Solid State Ionics. 2015. V. 271. P. 69–72. https://doi.org/10.1016/j.ssi.2014.11.004
48. Xu J., Zhou W., Li Z., Wang J., Ma J. // Int. J. Hydrog. Energy. 2009. V. 34. P 6646–6654. https://doi.org/10.1016/j.ijhydene.2009.06.038.
49. Wang R., Li Y., Shi R., Yang M.. // J Mol. Catal. A:Chem. 2011. V. 344. P. 122–127. https://doi.org/ 10.1016/j.molcata.2011.05.009
50. Zhang H. J., Chen Z. Q. and Wang S. J. // Phys. Rev. B 82 (2010) 035439. https://doi.org/ 10.1103/PhysRevB.82.035439
51. Du J., Liu G., Li F., Zhu Y. and L. Sun Iron–Salen // Adv. Sci., 2019. V. 6. P. 1900117. https://doi.org/ 10.1002/advs.201900117
52. Cano A.M., Marquardt A.E., DuMont J.W.and George S.M.// J. Phys. Chem. C. 2019. V. 123. P. 10346−10355. https://doi.org/10.1021/acs.jpcc.9b00124
Review
For citations:
Shutilov A.A., Simonov M.N., Fedorova V.E., Marchuk A.S., Prosvirin I.P., Sadovskaya E.M., Eremeev N.F., Zenkovets G.A. The surface of nanostructured (Ni)CoAl2O4 spinel and their study in dry reforming of methane. Kataliz v promyshlennosti. 2024;24(6):35-47. (In Russ.) https://doi.org/10.18412/1816-0387-2024-6-35-47