Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The surface of nanostructured (Ni)CoAl2O4 spinel and their study in dry reforming of methane

https://doi.org/10.18412/1816-0387-2024-6-35-47

Abstract

NixCo1-xAl2O4 (x = 0–0.5) catalysts were prepared by the co-precipitation from solution of Ni, Co and Al nitrates. The dry gel was heated at 700 °C in air and resulting alumina modified by nickel and cobalt ions is formed with spinel structure. The in situ X-ray diffraction study of these precursors in the reduction by a H2-containing gas mixture at 700 °C and ex situ after preliminary reduction in a H2-containing gas mixture and further work under reaction medium conditions  showed that ensembles of Ni-Co alloy particles 3-4 nm in size are formed on the spinel surface. The influence of the composition of the catalysts and the duration of their testing on the catalytic properties in the dry reforming of methane reaction (DRM) was studied. The Ni0.35Co0.65Al2O4 catalyst is stable in the DRM for 20 hours with CH4 conversion of 76 % and an H2 yield of 42 % (T = 700 °C, t = 30 ms). The high catalytic activity of the obtained catalysts in DRM is due to the formation of highly dispersed (3–4 nm) nanoparticles of the Ni-Co alloy an active phase in an amount of 17–18 wt. % on the initially large specific surface area of a spinel, stabilized by nickel and cobalt ions, and possessing mobile bulk oxygen under reducing reaction conditions.

About the Authors

A. A. Shutilov
Boreskov Institute of catalysis, Novosibirsk
Russian Federation


M. N. Simonov
Boreskov Institute of catalysis, Novosibirsk
Russian Federation


V. E. Fedorova
Boreskov Institute of catalysis, Novosibirsk
Russian Federation


A. S. Marchuk
Boreskov Institute of catalysis, Novosibirsk
Russian Federation


I. P. Prosvirin
Boreskov Institute of catalysis, Novosibirsk
Russian Federation


E. M. Sadovskaya
Boreskov Institute of catalysis, Novosibirsk
Russian Federation


N. F. Eremeev
Boreskov Institute of catalysis, Novosibirsk
Russian Federation


G. A. Zenkovets
Boreskov Institute of catalysis, Novosibirsk
Russian Federation


References

1. Alipour Z, Borugadda, Wang H., Dalai A. K. // Chemical Engineering Journal. 2023.V. 452 .P. 139416, https://doi.org/10.1016/j.cej.2022.139416

2. Yentekakis I. V., Panagiotopoulou P., Artemakis G.// Appl. Catal. B: Environ. 2021. V. 296. P. 120210, https://doi.org/10.1016/j.apcatb.2021.120210

3. Александрова В. Д. // Международный журнал гуманитарных и естественных наук. 2019. № 5–1. URL: https://cyberleninka.ru/article/n/sovremennaya- kontseptsiya-tsirkulyarnoy-ekonomiki.

4. Yentekakis I.V., Goula G., Hatzisymeon M., Betsi-Argyropoulou I., Botzolaki G., Kousi K., Kondarides D.I., Taylor M.J., Parlett C.M.A., Osatiashtiani A., Kyriakou G., Holgado J.P., Lambert R.M. // Appl. Catal. B: Environ. 2019. V. 243 P. 490–501. https://doi.org/10.1016/j.apcatb.2018.10.048.

5. Abdulrasheed A., Jalil A.A., Gambo Y., Ibrahim M., Hambali H.U., Shahul Hamid M.Y. // Renewable Sustainable Energy Rev. 2019 V. 108. P. 175–193. https://doi.org/10.1016/j.rser.2019.03.054.

6. Song Y., Ozdemir E., Ramesh S., Adishev A., Subramanian S., Harale A., Albuali M., Fadhel B.A., Jamal A., Moon D., Choi S.H., Yavuz C.T. // Science. 2020. V. 367. P. 777–781 https://science.sciencemag.org/content/367/6479/777 /tab-pdf.

7. Pakhare D., Spivey J. // Chem. Soc. Rev. 2014. V. 43. P. 7813–7837. https://doi.org/10.1039/ C3CS60395D.

8. Tsoukalou A., Imtiaze Q., Kim S.M., Abdala P.-M., Yoon S., Muller C.-R. // J. Catal. 2016 V. 343. P. 208-214. http://dx.doi.org/10.1016/j.jcat.2016.03.018

9. Liu Z., Zang F., Rui N., Li X., Lin L., Betancourt L.E., Sun D., Xu W., Gen Y., Attenkofer K., Idriss H., Rodriguez J.A., Senanayake S.D. // ACS Catal. 2019. V. 9. P. 3349–3359. https:// 10.1021/Acscatal.8B05162.

10. Sharifianjazi F., Esmaeilkhanian A., Bazli L., Eskandarinezhad S., Khaksar S., Shafiee P., Yusuf M., Abdullah B., Salahshour P., Sadeghi F. // Int. J. Hydrog. Energy. 2022. V. 47. P. 42213–42233. https://doi.org/ 10.1016/j.ijhydene.2021.11.172

11. Rezaei M., Alavi S.M., Sahebdelfar S., Yan Z.F. // J. Nat. Gas. Chem. 2006. V. 15. P. 327–334. https://doi.org/10.1016/S1003-9953(07)60014-0.

12. Barama S., Dupeyrat-Batiot C., Capron M., Bordes-Richard E., Bakhti-Mohammedi O. // Catal. Today. 2009. V. 141. P. 385–392. https://doi.org/10.1016/j.cattod.2008.06.025.

13. Ferreira-Aparicio P., Guerrero-Ruiz A., Rodriquez-Ramos I. // Appl. Catal. A: Gen. 1998. V. 170. P. 177–187. https://doi.org/10.1016/S0926-860X(98) 00048-9.

14. Bitters J. S., T. He, Nestler E., Senanayake S.D., Chen J. G., Zhang C.// Journal of Energy Chemistry 68 (2022) 124–142. https://doi.org/10.1016/j.jechem/2021.11.041

15. Goula M.A., Charisiou N.D., Siakavelas G., Tzounis L., Tsiaoussis I., Panagiotopoulou P., Goula G., Yentekakis I.V. // Int. J. Hydrog. Energy. 2017. V 42. P. 13724–13740. https://doi.org/ 10.1016/j.ijhydene.2016.11.196

16. Sache E. Le, Pastor-Perez L., Watson D., Sepúlveda-Escribano A., Reina T.R. // Appl. Catal. B: Environ. 2018. V. 236. P. 458–465. https://doi.org/10.1016/j.apcatb.2018.05.051

17. Serrano-Lotina A., Daza L. // Appl. Catal. A Gen. 2014. V. 474. P. 107–113. https:// doi.org/10.1016/j.apcata.2013.08.027.

18. Stroud T., Smith T.J., Le Sach´e E., Santos J.L., Centeno M.A., Arellano-Garcia H., Odriozola J.A., Reina T.R. // Appl. Catal. B: Environ. 2018. V. 224. P. 125–135. https://doi.org/10.1016/j.apcatb.2017.10.047.

19. Zhang W.D., Liu B.S., Tian Y.L. // Catal. Comm. 2007. V. 8. P. 661–667. https://doi.org/10.1016/j.catcom.2006.08.020

20. Amin M.H., Mantri K., Newnham J., Tardio J., Bhargava S.K. // Appl. Catal. B: Environ. 2012. V. 119. P. 217–226. https://doi.org/10.1016/ j.apcatb.2012.02.039

21. Fakeeha A.H., Al Fatesh A.S., Ibrahim A.A., Kurdi A.N., Abasaeed A.E. // ACS Omega. 2021.V. 6. P. 1280–1288, https://doi.org/10.1021/ acsomega.0c04731.

22. Sengupta S., Ray K., Deo G. // Int. J. Hydrog. Energy. 2014. V. 39. P. 11462–11472, http://dx.doi.org/ 10.1016/j.ijhydene.2014.05.058

23. Gonzalez-delaCruz V.M., Pereniguez R., Ternero F., Holgado J.P., Caballero A. // J. Phys. Chem. C. 2012. V. 116. P. 2919–2926. https://doi.org/10.1021/jp2092048

24. Zhang J., Wang H., Dalai A. K. // Applied Catalysis A: General. 2008. V. 339 P. 121–129. https://doi.org/10.1016/j.apcata.2008.01.027

25. Foo S.Y., Cheng C.K., Nguyen T-H., Adesina A.A. // Ind. Eng. Chem. Res. 2010. V. 49. P. 10450–10458. https://doi.org/10.1021/ie100460g

26. Wu Z., Yang B., Miao S., Liu W., Xie J., Lee S., Pellin M.J., Xiao D., Su D., Ma D. // ACS Catal. 2019. V. 9. P. 2693–2700, https://doi.org/10.1021/ acscatal.8b02821.

27. Sengupta S., Ray K., Deo G. // Int. J. Hydrog. Energy. 2014. V. 39. P. 11462–11472. https://doi.org/10.1016/j. ijhydene.2014.05.058.

28. Kumari R., Sengupta S. // Int. J. Hydrog. Energy. 2020. V. 45. P. 22775–22787. https://doi.org/10.1016/j.ijhydene.2020.06.150.

29. Li H., Shin K., Henkelman G. //J. Chem. Phys. 2018. V. 149. P. 174705. https://doi.org/10.1063/1.5053894

30. Yu W., Porosoff M.-D., Chen J.-G. // Chem. Rev. 112 (2012) 5780–5817. https://doi.org/10.1021/cr300096b

31. Jo D.-Y., Lee M.-W., Kim C.-H., Choung J.-W., Ham H.-C., Lee K.-Y. // Catal. Today. 2021. V. 359. P. 52–64. https://doi.org/10.1016/j.cattod.2019.05.031

32. Erdogan B., Arbag H., Yasyerli N. //. Int. J. Hydrog.Enerdy 2018. V. 48. P. 1396–1405. https://doi.org/10.1016/j.ijhydene.2017.11.127

33. Zhang J., Wang H., Dalai A. K. // Journal of Catalysis 2007. V. 249. P. 300–310. https://doi.org/10.1016/j.jcata.2007.05.004

34. San Jose-Alonso D., Juadry J., Illan-Gomez M.J., Roman-Martínez M.C. // Appl. Catal. A: Gen. 2009. V. 371. P. 54–59. https://doi.org/10.1016/j.apcata.2009.09.026.

35. Chen Y., Ren J. // Catal. Lett. 1994. V. 29. P. 39–48. https://doi.org/10.1007/BF00814250

36. Dekkar S., Tezkratt S., Sellam D., Ikkour K., Parkhomenko K., Martinez-Martin A., Roger A.C. // Catal. Lett. 2020. V. 150, P. 2180–2199. http://dx.doiorg /10.1007/s10562-020-03120-3.

37. Sharifi M., Haghighi M., Rahmani F., Karimipour S. // J. Natural Gas Sci. and Eng. 2014. V. 21. P. 993–1004, http://dx.doiorg/10.1016/jjngse.201410.030

38. Hayakawa T., Harihara H., Andersen A.G., Suzuki K., Yasuda H., Tsunoda T., Hamakawa S., York A.P.E., Yoon Y.S., Shimizu M., Takehira K. .//.Appl. Catal. A: Gen. 1997. V. 149. P. 391–410. https://doi.org/10.1016/s0926-860x(96)00274-8

39. Hayakawa T., Suzuki S., Nakamura J., Uchijima T., Hamakawa S., Suzuki K., Shishido T., Takehira K. // Applied Catalysis A: Gen. 1999. V. 183. P. 273–285. https://doi.org/10.1016/s0926-860x(99)00071-x

40. Matus E. V., Nefedova D. V., Sukhova O. B., Ismagilov I. Z., Ushakov V. A., Yashnik S. A., Nikitin A. P., Kerzhentsev M. A., Ismagilov Z. R. //Kinetics and Catalysis. 2019. V. 60. P. 496–507. https://doi.org/10.1134/S0023158419040074

41. Bruker AXS. TOPAS V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual; Bruker AXS: Karlsruhe, Germany, 2008; Available online: http://algol.fis.uc.pt/jap/TOPAS%204-2%20Users%20Manual.pdf (accessed on 8 May 2020)

42. Database: Inorganic Crystal Structure Database, ICSD. In Release 2008. Fashinformationszentrum Karsruhe D #8211 1754 Eggenstein #8211 Leopoldshafen, Germany, 2008.

43. Moudler J., Stickle W., Sobol P., Bomben K., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp.: Eden. Prairie, MN, 1992.

44. Scofield J. H., J. // Electron Spectrosc. Relat. Phenom. 1976 V. 8. P. 129–137. https://doi.org/10.1016/0368-2048(76)80015-1

45. Kwok R. Free, fully featured, software for the analysis of XPS spectra. November 25, 2023. http://xpspeak.software.informer.com/4.1/

46. Садыков В. А., Садовская Е. М., Уваров Н. Ф. // Электрохимия. 2015. Т. 51. № 5, с. 529–539 https://doi.org/ 10.7868/S0424857015050114

47. Sadykov V., Sadovskaya E., Bobin A., Kharlamova T., Uvarov N., Ulikhin A., Argirusis C., Sourkouni G., Stathopoulos V. // Solid State Ionics. 2015. V. 271. P. 69–72. https://doi.org/10.1016/j.ssi.2014.11.004

48. Xu J., Zhou W., Li Z., Wang J., Ma J. // Int. J. Hydrog. Energy. 2009. V. 34. P 6646–6654. https://doi.org/10.1016/j.ijhydene.2009.06.038.

49. Wang R., Li Y., Shi R., Yang M.. // J Mol. Catal. A:Chem. 2011. V. 344. P. 122–127. https://doi.org/ 10.1016/j.molcata.2011.05.009

50. Zhang H. J., Chen Z. Q. and Wang S. J. // Phys. Rev. B 82 (2010) 035439. https://doi.org/ 10.1103/PhysRevB.82.035439

51. Du J., Liu G., Li F., Zhu Y. and L. Sun Iron–Salen // Adv. Sci., 2019. V. 6. P. 1900117. https://doi.org/ 10.1002/advs.201900117

52. Cano A.M., Marquardt A.E., DuMont J.W.and George S.M.// J. Phys. Chem. C. 2019. V. 123. P. 10346−10355. https://doi.org/10.1021/acs.jpcc.9b00124


Review

For citations:


Shutilov A.A., Simonov M.N., Fedorova V.E., Marchuk A.S., Prosvirin I.P., Sadovskaya E.M., Eremeev N.F., Zenkovets G.A. The surface of nanostructured (Ni)CoAl2O4 spinel and their study in dry reforming of methane. Kataliz v promyshlennosti. 2024;24(6):35-47. (In Russ.) https://doi.org/10.18412/1816-0387-2024-6-35-47

Views: 146


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)