Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Conversion of ethylene to propylene over NiO-MoO3/Al2O3 catalyst

https://doi.org/10.18412/1816-0387-2024-6-60-69

Abstract

The effect of operating conditions of ethylene conversion to propylene on the yield of products, activity and stability of NiO-MoO3/Al2O3 catalyst was studied. The catalytic tests were carried out in a fixed-bed flow reactor at temperatures of 100-250 °C, atmospheric pressure and weight hourly space velocity of 0.25-2 h-1. The maximum propylene yield of 57 wt.% is achieved at 150 °C and 0.25 h-1. Under these conditions the degree of ethylene conversion reaches 90 %. The kinetic model for the process has been proposed, which described the formation of the main reaction products. It has been shown that carbonaceous deposits are formed on the catalyst surface during the ethylene conversion. The amount of these deposits increases with increasing temperature and contact time. Moreover some Mo species change the oxidation state from +6 to +4/+5.

About the Authors

T. R. Karpova
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch,Russian Academy of Sciences, Omsk
Russian Federation


A. V. Lavrenov
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch,Russian Academy of Sciences, Omsk
Russian Federation


M. A. Moiseenko
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch,Russian Academy of Sciences, Omsk
Russian Federation


O. V. Potapenko
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch,Russian Academy of Sciences, Omsk
Russian Federation


V. A. Koveza
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch,Russian Academy of Sciences, Omsk
Russian Federation


E. A. Buluchevskii
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch,Russian Academy of Sciences, Omsk
Russian Federation


A. B. Arbuzov
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch,Russian Academy of Sciences, Omsk
Russian Federation


A. V. Vasilevich
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch,Russian Academy of Sciences, Omsk
Russian Federation


References

1. Vogt E.T.C., Whiting G.T., Chowdhury A.D., Weckhuysen B.M. // Advances in Catalysis. 2015. V. 58. P. 143–314. https://doi.org/10.1016/bs.acat.2015.10.001.

2. Kianfar E., Hajimirzaee S., Mousavian S., Mehr A.S. // Microchem. J. 2020. V. 156. P. 104822. https://doi.org/10.1016/j.microc.2020.104822.

3. Mol J.C., van Leeuwen P.W.N.M. Handbook of Heterogeneous Catalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. P. 3240–3256.

4. https://doi.org/10.1002/9783527610044.hetcat0164/

5. Jan O., Song K., Dichiara A.B., Resende F.L.P. // Ind. Eng. Chem. Res. 2018. V. 57. № 31. P. 10241–10250. https://doi.org/ 10.1021/acs.iecr.8b01902/

6. Седов И.В., Макарян И.А., Берзигияров П.К., Магомедова М.В., Максимов А.Л. // Журнал прикладной химии. 2018. Т. 91. № 12. С. 1693–1707.

7. Speight J.G. Handbook of Industrial Hydrocarbon Processes. Gulf Professional Publishing, 2020. 143–192 p. https://doi.org/10.1016/B978-0-12-809923-0.00004-7.

8. Bao J., Yang G., Yoneyama Y., Tsubaki N. // ACS Catal. 2019. V. 9. № 4. P. 3026–3053. https://doi.org/10.1021/acscatal.8b03924/

9. Mohsenzadeh A., Zamani A., Taherzadeh M.J. // ChemBioEng Rev. 2017. V. 4. № 2. P. 75–91. https://doi.org/10.1002/cben.201600025.

10. US Patent 8395005, опубл. 12.03.2013.

11. Патент РФ 2383522, опубл. 10.03.2010.

12. Li L., Palcheva R.D., Jens K.J. // Top. Catal. 2013. V. 56. P. 783–788. https://doi.org/10.1007/s11244-013-0036-z.

13. Булучевский Е.А., Михайлова М.С., Лавренов А.В. // Химия в интересах устойчивого развития. 2013. №1. С. 55–59.

14. Сайфулина Л.Ф., Булучевский Е.А., Лавренов А.В. // Журнал Сибирского федерального университета, серия "Химия". 2014. Т. 7, № 4. С. 526–535.

15. Булучевский Е.А., Карпова Т.Р., Сайфулина Л.Ф., Лавренов А.В. // Российский химический журнал. 2018. Т. LXII. №1–2. С.110–116. https://doi.org/10.6060/rcj.2018621-2.8.

16. Karpova T.R., Buluchevskiy E.A., Moiseenko M.A., Lavrenov A.V., Arbuzov A.B. // AIP Conference Proceedings. 2019. V. 2143. P. 020024. https://doi.org/10.1063/1.5122923

17. US Patent 3689589, опубл. 5.09.1972.

18. Karpova T., Buluchevskiy E., Lavrenov A., Moiseenko M., Trenikhin M., Arbuzov A., Gulyaeva T., Savelyeva G., Muromtsev I. // Mol. Catal. 2021. V. 499. P. 111316. https://doi.org/10.1016/j.mcat.2020.111316.

19. Карпова Т.Р., Булучевский Е.А., Лавренов А.В., Моисеенко М.А., Арбузов А.Б., Гуляева Т.И., Юрпалов В.Л. // Катализ в промышленности. 2021. Т. 21. № 3. С. 154–162. https://doi.org/10.18412/1816-0387-2021-3-154-162.

20. Alvarado Perea L., Felischak M., Wolff T., López Gaona J.A., Hamel C., Seidel-Morgenstern A. // Fuel. 2021. V. 284. P. 119031. https://doi.org/10.1016/j.fuel.2020.119031.

21. Булучевский Е.А., Лавренов А.В., Сайфулина Л.Ф. // Журнал Сибирского федерального университета, серия “Химия.” 2014. Т. 3, № 7. С. 424–430.

22. Булучевский Е.А., Лавренов А.В., Сайфулина Л.Ф. // Химия в интересах устойчивого развития. 2014. Т. 22. С. 561–567.

23. https://cccbdb.nist.gov/

24. Loman T.E., Ma Y., Ilin V., Gowda S., Korsbo N., Yewale N., Rackauckas C., Isaacson S.A. // PLOS Computat.Biol. 2023. Oct 18;19(10):e1011530. https://doi.org/10.1371/journal.pcbi.1011530.

25. Ma Y., Gowda S., Anantharaman R., Laughman C., Shah V., Rackauckas C. arXiv:2103.05244. 2021. https://doi.org/10.48550/arXiv.2103.05244.

26. Rackauckas C., Nie Q. // Journal of Open Research Software. 2017. V. 5. № 1. P. 15. https://doi.org/10.5334/jors.151.

27. Mogensen P.K., Riseth A.N. // Journal of Open Source Software. 2018. V. 3. № 24. P. 615. https://doi.org/10.21105/joss.00615.

28. Martínez A., Arribas M.A., Concepción P., Moussa S. // Appl. Catal. A Gen. 2013. V. 467. P. 509–518. https://doi.org/10.1016/j.apcata.2013.08.021.

29. Koninckx E., Mendes P.S.F., Thybaut J.W., Broadbelt L.J. // Appl. Catal. A Gen. 2021. V. 624, P. 118296. https://doi.org/10.1016/j.apcata.2021.118296.

30. Finiels A., Fajula F., Hulea V. // Catal. Sci. Technol. 2014. V 4. № 8. P. 2412–2426. https://doi.org/10.1039/C4CY00305E.

31. Lu K., Jin F., Wu G., Ding Y. // Sustain. Energy Fuels. 2019. V. 3. № 12. P. 3569–3581. https://doi.org/10.1039/C9SE00771G.

32. Nikolova D., Edreva-Kardjieva R., Giurginca M., Meghea A., Vakros J., Voyiatzis G.A., Kordulis C. // Vib. Spectrosc. 2007. V. 44. № 2. P. 343–350. https://doi.org/10.1016/j.vibspec.2007.03.002.

33. Garbarino G., Campodonico S., Perez A.R., Carnasciali M.M., Riani P., Finocchio E., Busca G. // Appl. Catal. A Gen. 2013. V. 452. P. 163–173. https://doi.org/10.1016/j.apcata.2012.10.039.

34. Morales-Ortuño J.C., Klimova T.E. // Fuel. 2017. V. 198. P. 99–109. https://doi.org/10.1016/j.fuel.2017.01.007.

35. Budukva S.V., Klimov O.V., Chesalov Y.A., Prosvirin I.P., Larina T.V., Noskov A.S. // Catal. Lett. 2018. V. 148. P. 1525–1534. https://doi.org/10.1007/s10562-018-2365-9.

36. Tian H., Roberts C.A., Wachs I.E. // J. Phys. Chem. C. 2010. V. 114. № 33. P. 14110–14120. https://doi.org/10.1021/jp103269w.

37. Aritani H., Tanaka T., Funabiki T., Yoshida S., Eda K., Sotani N., Kudo M., Hasegawa S. // J. Phys. Chem. 1996. V. 100. № 50. P. 19495–19501. https://doi.org/10.1021/jp9615464.


Review

For citations:


Karpova T.R., Lavrenov A.V., Moiseenko M.A., Potapenko O.V., Koveza V.A., Buluchevskii E.A., Arbuzov A.B., Vasilevich A.V. Conversion of ethylene to propylene over NiO-MoO3/Al2O3 catalyst. Kataliz v promyshlennosti. 2024;24(6):60-69. (In Russ.) https://doi.org/10.18412/1816-0387-2024-6-60-69

Views: 210


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)