

Additives to cracking catalyst based on MeOx/Al2O3 systems (Me = Cu, Fe, Ce, Co, Mn and La) to reduce the content of nitrogen oxides in regeneration gases
https://doi.org/10.18412/1816-0387-2024-6-70-78
Abstract
The influence of the nature of nitrogen-containing compounds introduced into a model cracking feedstock (n-hexadecane) on the composition of regeneration gases formed during catalyst regeneration was studied. An increase in the content of CO and NOx in the composition of regeneration gases was observed with an increase in the basicity and molecular weight of nitrogen compounds in the range: pyridine < n-butylamine < pyrrole < quinoline < indole. The effect of a Pt-based CO promoter on the composition of regeneration gases was studied. The use of a CO promoter reduces CO emissions by 99.4% but leads to a significant increase in NOx emissions. Additives were synthesized and studied to reduce the content of nitrogen oxides in the regeneration gases of a cracking catalyst. The additives were mixed oxides containing Cu, Fe, Ce, Co, Mn and La deposited on γ-alumina. The use of these additives at the stage of regeneration of the cracking catalyst led to a decrease in the content of nitrogen oxides formed during regeneration. For an additive based on copper oxide, the efficiency of reducing the content of nitrogen oxides in regeneration gases reached 12.2%.
About the Authors
E. O. KobzarRussian Federation
T. V. Bobkova
Russian Federation
O. V. Potapenko
Russian Federation
M. O. Ananyeva
Russian Federation
D. N. Ogurtsova
Russian Federation
V. A. Koveza
Russian Federation
References
1. Хаджиев С.Н., Капустин В.М., Максимов А.Л., Чернышева Е.А., Кадиев Х.М., Герзелиев И.М., Колесниченко Н.В. // Нефтепереработка и нефтехимия. 2014. № 9. С. 3–10.
2. Ахметов, С. А. Технология глубокой переработки нефти и газа: учебное пособие для вузов / С. А. Ахметов. – Уфа: Гилем, 2002. – 672 с.
3. Xie Y., Zhang Y., He L., Jia C.Q., Yao Q., Sun M., Ma X. // Appl. Catal. A Gen. 2023. V. 657. P. 119159. https://doi.org/10.1016/j.apcata.2023.119159
4. Oloruntoba A., Zhang Y., Hsu C.S. // Energies. 2022. V. 15. № 6. P. 2061. https://doi.org/10.3390/en15062061
5. Suganuma S., Katada N. // Fuel Process. Technol. 2020. V. 208. P. 106518. https://doi.org/10.1016/j.fuproc.2020.106518
6. Singh D., Chopra A., Patel M. B., Sarpal A. S. // Chromatographia. 2011. V. 74. P. 121–126. https://doi.org/10.1007/s10337-011-2027-1
7. Zhou J., Zhao J., Zhang J., Zhang T., Ye M., Liu, Z. // Chin. J. Catal. 2020. V. 41. № 7. P. 1048–1061. https://doi.org/10.1016/S1872-2067(20)63552-5
8. Солодова Л.Н., Терентьева Н.А. // Вестник Казанского технологического университета. 2012. Т. 15. № 1. С. 141–147.
9. Barth J.O., Jentys A., Lercher J.A. // Ind. Eng. Chem. Res. 2004. V. 43. № 12. С. 3097–3104. https://doi.org/10.1021/ie034300b
10. Li S., Jiang Q., Qi Y., Zhao D., Tang Y., Liu Q., Chen Z., Zhu Y., Dai B., Song H., Zhang L. // J. Hazard. Mater. 2022. V. 436. P. 129187.
11. Wen B., He M., Costello C. // Energy Fuels. 2002. V. 16. № 5. P. 1048–1053. https://doi.org/10.1021/ef010268r
12. Luan H., Wu C., Xiu G., Ju F., Ling H., Pan H. // Environ. Sci. Pollut. Res. 2022. P. 1–11. https://doi.org/10.1007/s11356-021-16767-1
13. Efthimiadis E.A., Iliopoulou E.F., Lappas A.A., Iatridis D.K., Vasalos I.A. // Ind. Eng. Chem. Res. 2002. V. 41. № 22. P. 5401–5409. https://doi.org/10.1021/ie020265h
14. Liu Z., Ihl Woo S. // Catal Rev Sci Eng. 2006. V. 48. № 1. P. 43–89. https://doi.org/10.1080/01614940500439891
15. Iliopoulou E.F., Efthimiadis E.A., Nalbandian L., Vasalos I.A., Barth J.O., Lercher J. A. // Appl. Catal. B Environ. 2005. V. 60. № 3–4. P. 277–288. https://doi.org/10.1016/j.apcatb.2005.03.011
16. Iliopoulou E.F., Efthimiadis E.A., Lappas A.A., Vasalos I.A. // Ind. Eng. Chem. Res. 2005. V. 44. № 14. P. 4922–4930. https://doi.org/10.1021/ie049192n
17. Jabłońska M., Palkovits R. // Catal. Sci. Technol. 2016. V. 6. № 1. P. 49–72. https://doi.org/10.1039/c5cy00646e
18. Gómez S.A., Campero A., Martınez-Hernández A., Fuentes G.A. // Appl. Catal. A Gen. 2000. V. 197. № 1. P. 157–164. https://doi.org/10.1016/S0926-860X(99)00546-3
19. Xin Y., Li Q., Zhang Z. // ChemCatChem. 2018. V. 10. № 1. P. 29–41. https://doi.org/10.1002/cctc.201700854
20. Komvokis V.G., Iliopoulou E.F., Vasalos I.A., Triantafyllidis K.S., Marshall C.L. // Appl. Catal. A Gen. 2007. V. 325. № 2. P. 345–352. https://doi.org/10.1016/j.apcata.2007.02.035
21. Horiuchi T., Fujiwara T., Chen L., Suzuki K., Mori T. // Catal. Letters. 2002. V. 78. P. 319–323. https://doi.org/10.1023/A:1014952400564
22. Chen L., Horiuchi T., Osaki T., Mori T. // Appl. Catal. B Environ. 1999. V. 23. № 4. P. 259–269. https://doi.org/10.1016/S0926-3373(99)00084-3
23. Zhou Z., Harold M.P., Luss D. // Appl. Catal. B Environ. 2019. V. 255. P. 117742. https://doi.org/10.1016/j.apcatb.2019.05.044
24. Shimizu K., Satsuma A., Hattori T. // Appl. Catal. B Environ. 1998. V. 16. № 4. P. 319–326. https://doi.org/10.1016/S0926-3373(97)00088-X
25. Bobkova T.V., Dmitriev K.I., Potapenko O.V., Doronin V.P., Sorokina T.P. // Catal. Ind. 2023. V. 15. № 2. P. 175–181. https://doi.org/10.1134/s207005042302002
26. Schmitter J.M., Vajta Z., Arpino P.J. // Phys. Chem. Earth. 1980. V. 12. P. 67–76. https://doi.org/10.1016/0079-1946(79)90089-2
27. Dmitriev K.I., Potapenko O.V., Bobkova T.V., Sorokina T.P., Doronin V.P. // AIP Conf. Proceed. 2019. V. 2143. № 1. P. 020018. https://doi.org/10.1063/1.5122917
Review
For citations:
Kobzar E.O., Bobkova T.V., Potapenko O.V., Ananyeva M.O., Ogurtsova D.N., Koveza V.A. Additives to cracking catalyst based on MeOx/Al2O3 systems (Me = Cu, Fe, Ce, Co, Mn and La) to reduce the content of nitrogen oxides in regeneration gases. Kataliz v promyshlennosti. 2024;24(6):70-78. (In Russ.) https://doi.org/10.18412/1816-0387-2024-6-70-78