Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis and properties of palladium catalysts supported on n-modified carbon material sibunit in the reaction of selective hydrogenation of acetylene

https://doi.org/10.18412/1816-0387-2024-6-79-89

Abstract

The possibility of introducing nitrogen into the structure of the carbon catalyst support Sibunit by high-temperature treatment in a stream of ammonia at 800-1000°C has been studied. It has been shown that preliminary oxidation of the Sibunit surface with a 5% solution of nitric acid promotes more efficient nitrogen binding, which may be due to the presence of surface oxygen-containing groups and/or greater defectiveness of the surface of the oxidized carbon material. The depositing of palladium to Sibunit, subjected to preliminary oxidation and treatment in NH3 at 1000°C, leads to an increase in the activity and selectivity of the Pd/Sibunit catalyst in the hydrogenation of acetylene to ethylene. It was found that the improvement in catalytic characteristics is due to an increase in the availability of supported palladium due to its localization in larger pores of the N-modified support.

About the Authors

D. V. Yurpalova
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Omsk
Russian Federation


E. O. Akhralovich
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Omsk
Russian Federation


M. A. Panafidin
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. V. Nartova
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. M. Dmitrachkov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


O. V. Gorbunova
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Omsk
Russian Federation


A. V. Syrieva
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Omsk
Russian Federation


V. L. Temerev
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Omsk
Russian Federation


References

1. Zhang J., Sui Z., Zhu Y., Chen D., Zhou X., Yuan W. // Chemical Engineering & Technology. 2016. V. 39. № 5. P. 865–873. https://doi.org/10.1002/ceat.201600020

2. Zhong M., Zhao J., Fang Y., Wu D., Zhang L., Du C., Liu S., Yang S., Wan S., Jiang Y., Huang J., Xiong H. // Applied Catalysis A: General. 2023. V. 662. https://doi.org/10.1016/j.apcata.2023.119288

3. Kang L., Cheng B., Zhu M. // Royal Society Open Science. 2019. V. 6, № 11. P. 191-198. https://doi.org/10.1098/rsos.191155

4. Патент US8410015B2, опубл. 02.04.2013

5. Пинаева Л.Г., Носков А.С. // Катализ в промышленности. 2021. Т. 21. № 5. С. 308-330. https://doi.org/10.18412/1816-0387-2021-5-308-330

6. Седов И.В., Макарян И.А., Берзигияров П.К., Магомедова М.В., Максимов А.Л. // Журнал прикладной химии. 2018. Т. 91. №12. С. 1693-1707. https://doi.org/10.1134/S0044461818120034

7. Li R., Yue Y., Chen Zh., Chen X., Wang S., Jiang Zh., Wang B., Xu Q., Han D., Zhao J. // Applied Catalysis B: Environmental. 2020. V. 279. P. 119-128. https://doi.org/10.1016/j.apcatb.2020.119348

8. Pei G., Liu X., Wang A., Lee A.F., Isaacs M.A., Li L., Pan X., Yang X., Wang X., Tai Zh., Wilson K., Zhang T. // ACS Catalysis. 2015. V. 15. P. 3717–3725. https://doi.org/10.1021/acscatal.5b00700

9. Zhou H., Yang X., Wang A., Miao S., Liu X., Pan X., Su Y., Li L., Tan Y., Zhang T. // Cuihua Xuebao / Chinese Journal of Catalysis. 2016. V. 37. 692–699. https://doi.org/10.1016/S1872-2067(15)61090-7

10. Bogdan V.I., Koklin A.E., Kalenchuk A.N., Kustov L.M. // Mendeleev Communications. 2020. V. 30. P. 462–464. https://doi.org/10.1016/j.mencom.2020.07.018

11. Chinayon S., Mekasuwandumrong O., Praserthdam P., Panpranot J. // Catalysis Communications. 2008. V. 9. P. 2297–2302. https://doi.org/10.1016/J.CATCOM.2008.03.032

12. Cao Y., Fu W., Ren Zh., Sui Zh., Luo J., Duan X, Zhou X. // AIChE Journal. 2020. V. 66, №4. P. 35-46. https://doi.org/10.1002/aic.16857

13. Chesnokov V. V., Podyacheva O.Y., Richards R.M. // Materials Research Bulletin. 2017. V. 88. P. 78-84. https://doi.org/10.1016/j.materresbull.2016.12.013

14. Shi W., Wu K., Xu J., Zhang Q., Zhang B., Su D. // Chemistry of Materials. 2017. V. 29. P.8670-8678. https://doi.org/10.1021/acs.chemmater.7b02658

15. Zhou S., Shang L., Zhao Y., Shi R., Waterhouse G.I.N., Huang Y.C., Zheng L., Zhang T. // Advanced Materials. 2019. V. 31. https://doi.org/10.1002/adma.201900509

16. Wang Q., Zhao J., Xu L., Yu L., Yao Z., Lan G., Guo L., Zhao J., Lu Ch., Pan Zh., Wang J., Zhang Q., Li X. // Applied Surface Science. 2021. V.562, №5. P. 233-242. https://doi.org/10.1016/j.apsusc.2021.150141

17. Makeeva D., Kulikov L., Zolotukhina A., Maximov A., Karakhanov E. // Molecular Catalysis. 2022. V. 517. P. 112012. https://doi.org/10.1016/j.mcat.2021.112012

18. Yurpalova D.V., Afonasenko T.N., Prosvirin I.P., Bukhtiyarov A.V., Kovtunova L.M., Vinokurov Z.S., Trenikhin M.V., Gerasimov E.Y., Khramov E.V., Shlyapin D.A. // Journal of Catalysis. 2024. V. 432. https://doi.org/10.1016/j.jcat.2024.115417

19. Юрпалова Д.В., Афонасенко Т.Н., Тренихин М.В., Леонтьева Н.Н., Арбузов А.Б., Темерев В.Л., Шляпин Д.А. // Нефтехимия. 2023. Т. 63. №4. С. 582–594. https://doi.org/10.31857/S0028242123040123

20. German D., Kolobova E., Pakrieva E., Carabineiro S.A.C., Sviridova E., Perevezentsev S., Alijani S., Villa A., Prati L., Postnikov P., Bogdanchikova N., Pestryakov A. // Materials. 2022. V. 15(13). 4695. https://doi.org/10.3390/ma15134695

21. Шитова Н.Б., Шляпин Д.А., Афонасенко Т.Н., Кудря Е.Н., Цырульников П.Г., Лихолобов В.А. // Кинетика и катализ. 2011. Т. 52. № 2. С. 259-265.

22. Плаксин Г.В., Бакланова О.Н., Лавренов А.В., Лихолобов В.А. // Химия Твердого Топлива. 2014. № 6. C. 26–32. https://doi.org/10.7868/s0023117714060036

23. Нартова А.В., Ананьина А.А., Семиколенов С.В., Дмитрачков А.М., Квон Р.И., Бухтияров В.И. // Кинетика и катализ. 2023. Т. 64. № 4. С. 466–473. https://doi.org/10.31857/S0453881123040093

24. Ruan L., Pei A., Liao J., Zeng L., Guo G., Yang K., Zhou Q., Zhao N., Zhu L., Chen B.H. // Fuel. 2021. V. 284. P. 48-58. https://doi.org/10.1016/j.fuel.2020.119015

25. Ruan W., Wang Y., Liu Ch., Xu D., Hu P., Ye Y., Wang D., Liu Y-Q., Zheng Zh., Wang Duo // Journal of Analytical and Applied Pyrolysis. 2022. V. 168. P. 84-97. https://doi.org/10.1016/j.jaap.2022.105710

26. Wang Y., Liu H., Wang K., Song Sh., Tsiakaras P. // Applied Catalysis B: Environmental. 2017. V.210. P. 57–66. https://doi.org/10.1016/j.apcatb.2017.03.054

27. Княжева О.А., Бакланова О.Н., Лавренов А.В. // Химия Твердого Топлива. 2020. № 6. C. 5–14. https://doi.org/10.31857/s0023117720060055

28. Таран О.П., Деком К., Полянская Е.М., Аюшеев А.Б., Бессон М., Пармон В.Н. // Катализ в промышленности. 2013. № 1. С. 40–50.

29. Полянская Е.М., Таран О.П. // Вестник Томского государственного университета. Химия. 2017. № 10. P. 6–26. https://doi.org/10.17223/24135542/10/1

30. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Handbook of X-Ray Photoelectron Spectroscopy. Ed. by J. Chastain. Perkin-Elmer, Eden Prairie, Minnesota, 1992.

31. Scofield J.H. // Journal of Electron Spectroscopy and Related Phenomena. 1976. V.8. P.129–137. https://doi.org/10.1016/0368-2048(76)80015-1

32. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Kremneva A.M., Shlyapin D.A. // Molecular Catalysis. 2021. V. 511. 111717. https://doi.org/10.1016/J.MCAT.2021.111717

33. Thommes M., Kaneko K., Neimark A., Olivier J.P., Rodriduez-Reinoso F., Rouquerol J., Sing K. // Pure Applied Chemistry. 2015. V. 87. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117

34. Arrigo R., Hävecker M., Wrabetz S., Blume R., Lech M., Mcgregor J., Parrott E., Zeitler J.A., Gladden L., Gericke A., Schlögl R., Su D. // Journal of the American Chemical Society. 2010. V.132, № 28. P. 9616–9630. https://doi.org/10.1021/ja910169v

35. Kuntumalla M.K., Attrash M., Akhvlediani R., Michaelson Sh., Hoffman A. // Applied Surface Science. 2020. V.525. P. 342-351. https://doi.org/10.1016/j.apsusc.2020.146562

36. Dementjev A.P., Graaf A., Sanden M., Maslakov K.I., Naumkin A.V., Serov A.A. // Diamond and Related materials. 2000. V.49, №9. P. 1904-1907. https://doi.org/10.1016/S0925-9635(00)00345-9

37. Ding Y., Zhou W., Gao J., Sun F., Zhao G. // Advanced Materials Interfaces. 2021. V. 8. P. 1–15. https://doi.org/10.1002/admi.202002091

38. Favaro M., Agnoli S., Perini L., Durante C., Gennaro A., Granozzi G. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 2923–2931. https://doi.org/10.1039/c2cp44154c

39. Ju W., Favaro M., Durante C., Perini L., Agnoli S., Schneider O., Stimming U., Granozzi G. // Electrochimica Acta. 2014. V. 141. P. 89–101. https://doi.org/10.1016/j.electacta.2014.06.141

40. Zhou W., Sasaki S., Kawasaki A. // Carbon. 2014. V. 78. P. 121–129. https://doi.org/10.1016/j.carbon.2014.06.055

41. Ayiania M., Smith M., Hensley A., Scudiero L., McEwen J., Garcia-Perezh M. // Carbon. 2020. V. 162. P. 528–544. https://doi.org/10.1016/j.carbon.2020.02.065

42. Inagaki M., Toyoda, M., Soneda, Y., Morishita, T. // Carbon. 2018. V. 132. P. 104–140. https://doi.org/10.1016/j.carbon.2018.02.024

43. Zhao D., Xu Zh., Chada J., Carrero C., Rosenfeld D.C., Rogers J.L., Hermans I., Huber G.W. // ACS Catalysis. 2017. V. 7, № 11. P. 7479–7489. https://doi.org/10.1021/acscatal.7b01482

44. Chesnokov V.V., Kriventsov V.V., Malykhin S.E., Svintsitskiy D.A., Podyacheva O.Yu., Lisitsyn A.S., Ryan M.R. // Diamond and Related Materials. 2018. V.89, №8. P. 67–73. https://doi.org/10.1016/j.diamond.2018.08.007

45. Глыздова Д.В., Смирнова Н.С., Леонтьева Н.Н., Герасимов Е.Ю.,

46. Просвирин И.П., Вершинин В.И., Шляпин Д.А., Цырульников П.Г. // Кинетика и катализ. 2017. Т. 58. № 2. С. 152–158. https://doi.org/10.7868/S0453881117020058

47. Borodziński A., Bond G.C. // Catalysis Reviews. 2006. V. 48. P. 91–144. https://doi.org/10.1080/01614940500364909


Review

For citations:


Yurpalova D.V., Akhralovich E.O., Panafidin M.A., Nartova A.V., Dmitrachkov A.M., Gorbunova O.V., Syrieva A.V., Temerev V.L. Synthesis and properties of palladium catalysts supported on n-modified carbon material sibunit in the reaction of selective hydrogenation of acetylene. Kataliz v promyshlennosti. 2024;24(6):79-89. (In Russ.) https://doi.org/10.18412/1816-0387-2024-6-79-89

Views: 191


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)