

Синтез и свойства палладиевых катализаторов, нанесенных на N-модифицированный углеродный материал Сибунит, в реакции селективного гидрирования ацетилена
https://doi.org/10.18412/1816-0387-2024-6-79-89
Аннотация
Изучена возможность введения азота в структуру углеродного носителя катализаторов Сибунит путем его высокотемпературной обработки в токе аммиака при 800–1000 °С. Показано, что предварительное окисление поверхности Сибунита 5 %-ным раствором азотной кислоты способствует более эффективному связыванию азота, что может быть обусловлено присутствием поверхностных кислородсодержащих групп и/или большей дефектностью поверхности окисленного углеродного материала. Нанесение палладия на Сибунит, подвергнутый предварительному окислению и обработке в NH3 при 1000 °С, приводит к увеличению активности и селективности Pd/Сибунит катализатора в реакции гидрирования ацетилена в этилен. Установлено, что улучшение каталитических характеристик обусловлено увеличением доступности нанесенного палладия за счет его локализации в более крупных порах N-модифицированного носителя.
Об авторах
Д. В. ЮрпаловаРоссия
Е. О. Ахралович
Россия
М. А. Панафидин
Россия
А. В. Нартова
Россия
А. М. Дмитрачков
Россия
О. В. Горбунова
Россия
А. В. Сырьева
Россия
В. Л. Темерев
Россия
Список литературы
1. Zhang J., Sui Z., Zhu Y., Chen D., Zhou X., Yuan W. // Chemical Engineering & Technology. 2016. V. 39. № 5. P. 865–873. https://doi.org/10.1002/ceat.201600020
2. Zhong M., Zhao J., Fang Y., Wu D., Zhang L., Du C., Liu S., Yang S., Wan S., Jiang Y., Huang J., Xiong H. // Applied Catalysis A: General. 2023. V. 662. https://doi.org/10.1016/j.apcata.2023.119288
3. Kang L., Cheng B., Zhu M. // Royal Society Open Science. 2019. V. 6, № 11. P. 191-198. https://doi.org/10.1098/rsos.191155
4. Патент US8410015B2, опубл. 02.04.2013
5. Пинаева Л.Г., Носков А.С. // Катализ в промышленности. 2021. Т. 21. № 5. С. 308-330. https://doi.org/10.18412/1816-0387-2021-5-308-330
6. Седов И.В., Макарян И.А., Берзигияров П.К., Магомедова М.В., Максимов А.Л. // Журнал прикладной химии. 2018. Т. 91. №12. С. 1693-1707. https://doi.org/10.1134/S0044461818120034
7. Li R., Yue Y., Chen Zh., Chen X., Wang S., Jiang Zh., Wang B., Xu Q., Han D., Zhao J. // Applied Catalysis B: Environmental. 2020. V. 279. P. 119-128. https://doi.org/10.1016/j.apcatb.2020.119348
8. Pei G., Liu X., Wang A., Lee A.F., Isaacs M.A., Li L., Pan X., Yang X., Wang X., Tai Zh., Wilson K., Zhang T. // ACS Catalysis. 2015. V. 15. P. 3717–3725. https://doi.org/10.1021/acscatal.5b00700
9. Zhou H., Yang X., Wang A., Miao S., Liu X., Pan X., Su Y., Li L., Tan Y., Zhang T. // Cuihua Xuebao / Chinese Journal of Catalysis. 2016. V. 37. 692–699. https://doi.org/10.1016/S1872-2067(15)61090-7
10. Bogdan V.I., Koklin A.E., Kalenchuk A.N., Kustov L.M. // Mendeleev Communications. 2020. V. 30. P. 462–464. https://doi.org/10.1016/j.mencom.2020.07.018
11. Chinayon S., Mekasuwandumrong O., Praserthdam P., Panpranot J. // Catalysis Communications. 2008. V. 9. P. 2297–2302. https://doi.org/10.1016/J.CATCOM.2008.03.032
12. Cao Y., Fu W., Ren Zh., Sui Zh., Luo J., Duan X, Zhou X. // AIChE Journal. 2020. V. 66, №4. P. 35-46. https://doi.org/10.1002/aic.16857
13. Chesnokov V. V., Podyacheva O.Y., Richards R.M. // Materials Research Bulletin. 2017. V. 88. P. 78-84. https://doi.org/10.1016/j.materresbull.2016.12.013
14. Shi W., Wu K., Xu J., Zhang Q., Zhang B., Su D. // Chemistry of Materials. 2017. V. 29. P.8670-8678. https://doi.org/10.1021/acs.chemmater.7b02658
15. Zhou S., Shang L., Zhao Y., Shi R., Waterhouse G.I.N., Huang Y.C., Zheng L., Zhang T. // Advanced Materials. 2019. V. 31. https://doi.org/10.1002/adma.201900509
16. Wang Q., Zhao J., Xu L., Yu L., Yao Z., Lan G., Guo L., Zhao J., Lu Ch., Pan Zh., Wang J., Zhang Q., Li X. // Applied Surface Science. 2021. V.562, №5. P. 233-242. https://doi.org/10.1016/j.apsusc.2021.150141
17. Makeeva D., Kulikov L., Zolotukhina A., Maximov A., Karakhanov E. // Molecular Catalysis. 2022. V. 517. P. 112012. https://doi.org/10.1016/j.mcat.2021.112012
18. Yurpalova D.V., Afonasenko T.N., Prosvirin I.P., Bukhtiyarov A.V., Kovtunova L.M., Vinokurov Z.S., Trenikhin M.V., Gerasimov E.Y., Khramov E.V., Shlyapin D.A. // Journal of Catalysis. 2024. V. 432. https://doi.org/10.1016/j.jcat.2024.115417
19. Юрпалова Д.В., Афонасенко Т.Н., Тренихин М.В., Леонтьева Н.Н., Арбузов А.Б., Темерев В.Л., Шляпин Д.А. // Нефтехимия. 2023. Т. 63. №4. С. 582–594. https://doi.org/10.31857/S0028242123040123
20. German D., Kolobova E., Pakrieva E., Carabineiro S.A.C., Sviridova E., Perevezentsev S., Alijani S., Villa A., Prati L., Postnikov P., Bogdanchikova N., Pestryakov A. // Materials. 2022. V. 15(13). 4695. https://doi.org/10.3390/ma15134695
21. Шитова Н.Б., Шляпин Д.А., Афонасенко Т.Н., Кудря Е.Н., Цырульников П.Г., Лихолобов В.А. // Кинетика и катализ. 2011. Т. 52. № 2. С. 259-265.
22. Плаксин Г.В., Бакланова О.Н., Лавренов А.В., Лихолобов В.А. // Химия Твердого Топлива. 2014. № 6. C. 26–32. https://doi.org/10.7868/s0023117714060036
23. Нартова А.В., Ананьина А.А., Семиколенов С.В., Дмитрачков А.М., Квон Р.И., Бухтияров В.И. // Кинетика и катализ. 2023. Т. 64. № 4. С. 466–473. https://doi.org/10.31857/S0453881123040093
24. Ruan L., Pei A., Liao J., Zeng L., Guo G., Yang K., Zhou Q., Zhao N., Zhu L., Chen B.H. // Fuel. 2021. V. 284. P. 48-58. https://doi.org/10.1016/j.fuel.2020.119015
25. Ruan W., Wang Y., Liu Ch., Xu D., Hu P., Ye Y., Wang D., Liu Y-Q., Zheng Zh., Wang Duo // Journal of Analytical and Applied Pyrolysis. 2022. V. 168. P. 84-97. https://doi.org/10.1016/j.jaap.2022.105710
26. Wang Y., Liu H., Wang K., Song Sh., Tsiakaras P. // Applied Catalysis B: Environmental. 2017. V.210. P. 57–66. https://doi.org/10.1016/j.apcatb.2017.03.054
27. Княжева О.А., Бакланова О.Н., Лавренов А.В. // Химия Твердого Топлива. 2020. № 6. C. 5–14. https://doi.org/10.31857/s0023117720060055
28. Таран О.П., Деком К., Полянская Е.М., Аюшеев А.Б., Бессон М., Пармон В.Н. // Катализ в промышленности. 2013. № 1. С. 40–50.
29. Полянская Е.М., Таран О.П. // Вестник Томского государственного университета. Химия. 2017. № 10. P. 6–26. https://doi.org/10.17223/24135542/10/1
30. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Handbook of X-Ray Photoelectron Spectroscopy. Ed. by J. Chastain. Perkin-Elmer, Eden Prairie, Minnesota, 1992.
31. Scofield J.H. // Journal of Electron Spectroscopy and Related Phenomena. 1976. V.8. P.129–137. https://doi.org/10.1016/0368-2048(76)80015-1
32. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Kremneva A.M., Shlyapin D.A. // Molecular Catalysis. 2021. V. 511. 111717. https://doi.org/10.1016/J.MCAT.2021.111717
33. Thommes M., Kaneko K., Neimark A., Olivier J.P., Rodriduez-Reinoso F., Rouquerol J., Sing K. // Pure Applied Chemistry. 2015. V. 87. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
34. Arrigo R., Hävecker M., Wrabetz S., Blume R., Lech M., Mcgregor J., Parrott E., Zeitler J.A., Gladden L., Gericke A., Schlögl R., Su D. // Journal of the American Chemical Society. 2010. V.132, № 28. P. 9616–9630. https://doi.org/10.1021/ja910169v
35. Kuntumalla M.K., Attrash M., Akhvlediani R., Michaelson Sh., Hoffman A. // Applied Surface Science. 2020. V.525. P. 342-351. https://doi.org/10.1016/j.apsusc.2020.146562
36. Dementjev A.P., Graaf A., Sanden M., Maslakov K.I., Naumkin A.V., Serov A.A. // Diamond and Related materials. 2000. V.49, №9. P. 1904-1907. https://doi.org/10.1016/S0925-9635(00)00345-9
37. Ding Y., Zhou W., Gao J., Sun F., Zhao G. // Advanced Materials Interfaces. 2021. V. 8. P. 1–15. https://doi.org/10.1002/admi.202002091
38. Favaro M., Agnoli S., Perini L., Durante C., Gennaro A., Granozzi G. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 2923–2931. https://doi.org/10.1039/c2cp44154c
39. Ju W., Favaro M., Durante C., Perini L., Agnoli S., Schneider O., Stimming U., Granozzi G. // Electrochimica Acta. 2014. V. 141. P. 89–101. https://doi.org/10.1016/j.electacta.2014.06.141
40. Zhou W., Sasaki S., Kawasaki A. // Carbon. 2014. V. 78. P. 121–129. https://doi.org/10.1016/j.carbon.2014.06.055
41. Ayiania M., Smith M., Hensley A., Scudiero L., McEwen J., Garcia-Perezh M. // Carbon. 2020. V. 162. P. 528–544. https://doi.org/10.1016/j.carbon.2020.02.065
42. Inagaki M., Toyoda, M., Soneda, Y., Morishita, T. // Carbon. 2018. V. 132. P. 104–140. https://doi.org/10.1016/j.carbon.2018.02.024
43. Zhao D., Xu Zh., Chada J., Carrero C., Rosenfeld D.C., Rogers J.L., Hermans I., Huber G.W. // ACS Catalysis. 2017. V. 7, № 11. P. 7479–7489. https://doi.org/10.1021/acscatal.7b01482
44. Chesnokov V.V., Kriventsov V.V., Malykhin S.E., Svintsitskiy D.A., Podyacheva O.Yu., Lisitsyn A.S., Ryan M.R. // Diamond and Related Materials. 2018. V.89, №8. P. 67–73. https://doi.org/10.1016/j.diamond.2018.08.007
45. Глыздова Д.В., Смирнова Н.С., Леонтьева Н.Н., Герасимов Е.Ю.,
46. Просвирин И.П., Вершинин В.И., Шляпин Д.А., Цырульников П.Г. // Кинетика и катализ. 2017. Т. 58. № 2. С. 152–158. https://doi.org/10.7868/S0453881117020058
47. Borodziński A., Bond G.C. // Catalysis Reviews. 2006. V. 48. P. 91–144. https://doi.org/10.1080/01614940500364909
Рецензия
Для цитирования:
Юрпалова Д.В., Ахралович Е.О., Панафидин М.А., Нартова А.В., Дмитрачков А.М., Горбунова О.В., Сырьева А.В., Темерев В.Л. Синтез и свойства палладиевых катализаторов, нанесенных на N-модифицированный углеродный материал Сибунит, в реакции селективного гидрирования ацетилена. Катализ в промышленности. 2024;24(6):79-89. https://doi.org/10.18412/1816-0387-2024-6-79-89
For citation:
Yurpalova D.V., Akhralovich E.O., Panafidin M.A., Nartova A.V., Dmitrachkov A.M., Gorbunova O.V., Syrieva A.V., Temerev V.L. Synthesis and properties of palladium catalysts supported on n-modified carbon material sibunit in the reaction of selective hydrogenation of acetylene. Kataliz v promyshlennosti. 2024;24(6):79-89. (In Russ.) https://doi.org/10.18412/1816-0387-2024-6-79-89