Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Structured catalysts for steam and steam-air conversion of ethanol into synthesis gas: II. Physicochemical characteristics

https://doi.org/10.18412/1816-0387-2025-1-3-9

Abstract

Ethanol is one of the promising sources of hydrogen (synthesis gas), including in various energy applications. The production of synthesis gas from ethanol is possible in various ways, for example, such as steam and steam-air conversion, which are endothermic and thermoneutal reactions, respectively. Control and management of heat and mass transfer during the occurrence of these reactions is an important task, which can be solved through the use of catalysts on heat-conducting metal substrates. This paper presents the results of a study of the physicochemical properties of Pt, Rh, Pd, Ru, Ni, Co-containing structured catalysts deposited on a FeCrAl mesh support, studied in the processes of steam and steam-air conversion of ethanol. Among the tested samples, the ruthenium catalyst showed the greatest efficiency in the processes of steam and steam-air conversion of ethanol, providing an equilibrium composition of the products without visible signs of carbonization.

About the Authors

V. N. Rogozhnikov
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Science, Novosibirsk
Russian Federation


D. I. Potemkin
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Science, Novosibirsk
Russian Federation


O. M. Stonkus
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Science, Novosibirsk
Russian Federation


K. I. Shefer
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Science, Novosibirsk
Russian Federation


A. N. Salanov
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Science, Novosibirsk
Russian Federation


V. P. Pakharukova
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Science, Novosibirsk
Russian Federation


P. V. Snytnikov
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Science, Novosibirsk
Russian Federation


References

1. К. И. Шефер, Э. М. Мороз, В. Н. Рогожников, 3, А. В. Порсин. Состав оксидных соединений, нанесенных на металлическую сетку при синтезе катализаторов окисления углеводородов // Известия ран. серия физическая. 2016. Т. 80, № 11. С. 1525-1528. DOI: 10.7868/S0367676516110284

2. Porsin A.V. , Kulikov A.V. , Rogozhnikov V.N. , Serkova A.N. , Salanov A.N. , Shefer K.I. Structured Reactors on a Metal Mesh Catalyst for Various Applications // Catalysis Today. 2016. V.273. P.213-220. DOI: 10.1016/j.cattod.2016.03.033

3. Porsin A.V., Rogozhnikov V.N., Kulikov A.V., Salanov A.N., Serkova A.N. Crystallization of Aluminum Hydroxide in a Sodium Aluminate Solution on a Heterogeneous Surface // Crystal Growth and Design. 2017. V.17. N9. P.4730-4738. DOI: 10.1021/acs.cgd.7b00660

4. Рогожников В.Н., Потемкин Д.И., Стонкус О.М., Шефер К.И., Саланов А.Н., Пахарукова В.П., Снытников П.В. Структурированные катализаторы паровой и паровоздушной конверсии этанола в синтез-газ: I. Приготовление и каталитические свойства // Катализ в промышленности. 2024. Т.24, № 6, С.

5. Pakharukova V.P. et al. Investigation of the Structure and Interface Features of Ni/Ce 1– x Zr x O 2 Catalysts for CO and CO 2 Methanation // J. Phys. Chem. C. 2021. Vol. 125, № 37. P. 20538–20550

6. Ruocco C. et al. Experimental study of the oxidative steam reforming of fuel grade bioethanol over Pt–Ni metallic foam structured catalysts // Int. J. Hydrogen Energy. 2022. Vol. 48. № 32. P. 11943-11955. https://doi.org/10.1016/j.ijhydene.2022.05.276

7. Palma V. et al. Ethanol steam reforming over bimetallic coated ceramic foams: Effect of reactor configuration and catalytic support // Int. J. Hydrogen Energy. 2015. Vol. 40, № 37. P. 12650-12662. https://doi.org/10.1016/j.ijhydene.2015.07.138

8. El Doukkali M. et al. Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts // Int. J. Hydrogen Energy. 2012. Vol. 37, № 10. P. 8298-8309. https://doi.org/10.1016/j.ijhydene.2012.02.154

9. Divins N.J. et al. Bio-ethanol steam reforming and autothermal reforming in 3-μm channels coated with RhPd/CeO2 for hydrogen generation // Chem. Eng. Process. Process Intensif. 2013. Vol. 64. P. 31-37. https://doi.org/10.1016/j.cep.2012.10.018

10. Cai W. et al. Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst // Catal. Today. 2008. Vol. 138, № 3–4. P. 152-156. https://doi.org/10.1016/j.cattod.2008.05.019

11. Cifuentes B. et al. Bioethanol steam reforming over monoliths washcoated with RhPt/CeO2–SiO2: The use of residual biomass to stably produce syngas // Int. J. Hydrogen Energy. 2021. Vol. 46, № 5. P. 4007-4018. https://doi.org/10.1016/j.ijhydene.2020.10.271

12. Chen H. et al. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides // J. Nat. Gas Chem. 2009. Vol. 18, № 2. P. 191-198. https://doi.org/10.1016/S1003-9953(08)60106-1

13. Rass-Hansen J. et al. Steam reforming of technical bioethanol for hydrogen production // Int. J. Hydrogen Energy. 2008. Vol. 33, № 17. P. 4547-4554. https://doi.org/10.1016/j.ijhydene.2008.06.020

14. Wang S. et al. Hydrogen production from the steam reforming of bioethanol over novel supported Ca/Ni-hierarchical Beta zeolite catalysts // Int. J. Hydrogen Energy. 2021. Vol. 46, № 73. P. 36245-36256. https://doi.org/10.1016/j.ijhydene.2021.08.170

15. Ruocco C. et al. Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor // Renew. Energy. 2022. Vol. 182. P. 913-922. https://doi.org/10.1016/j.renene.2021.10.064

16. Benito M. et al. Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure // J. Power Sources. 2007. Vol. 169, № 1. P. 167-176. https://doi.org/10.1016/j.jpowsour.2007.01.047

17. Xue Z. et al. Promoting effects of lanthanum oxide on the NiO/CeO2 catalyst for hydrogen production by autothermal reforming of ethanol // Catal. Commun. 2018. Vol. 108. P. 12-16. https://doi.org/10.1016/j.catcom.2018.01.024

18. Lou S. et al. A-site deficient titanate perovskite surface with exsolved nickel nanoparticles for ethanol steam reforming // Chem. Eng. Sci. Elsevier LTD, 2023. Vol. 274. P. 118690. https://doi.org/10.1016/j.ces.2023.118690

19. Llorca J. et al. Co-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor // Appl. Catal. B Environ. 2003. Vol. 43, № 4. P. 355-369. https://doi.org/10.1016/S0926-3373(02)00326-0

20. Aker V., Ayas N. Boosting hydrogen production by ethanol steam reforming on cobalt-modified Ni–Al2O3 catalyst // Int. J. Hydrogen Energy. Hydrogen Energy Publications LLC, 2023. Vol. 48, № 60. P. 22875-22888. https://doi.org/10.1016/j.ijhydene.2022.12.310

21. Xue Z. et al. Promoting effects of lanthanum oxide on the NiO/CeO2 catalyst for hydrogen production by autothermal reforming of ethanol // Catal. Commun. 2018. Vol. 108. P. 12-16. https://doi.org/10.1016/j.catcom.2018.01.024

22. Nieto-Márquez A. et al. Autothermal reforming and water-gas shift double bed reactor for H2 production from ethanol // Chem. Eng. Process. - Process Intensif. 2013. Vol. 74. P. 14-18. https://doi.org/10.1016/j.cep.2013.10.006

23. Da Costa-Serra J.F. et al. Ni and Co-based catalysts supported on ITQ-6 zeolite for hydrogen production by steam reforming of ethanol // Int. J. Hydrogen Energy. 2022. Vol. 48, № 68. P. 26518-26525. https://doi.org/10.1016/j.ijhydene.2022.11.128


Review

For citations:


Rogozhnikov V.N., Potemkin D.I., Stonkus O.M., Shefer K.I., Salanov A.N., Pakharukova V.P., Snytnikov P.V. Structured catalysts for steam and steam-air conversion of ethanol into synthesis gas: II. Physicochemical characteristics. Kataliz v promyshlennosti. 2025;25(1):3-9. (In Russ.) https://doi.org/10.18412/1816-0387-2025-1-3-9

Views: 166


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)