Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development of supported nickel-containing catalysts for methane tri-reforming: influence of pretreatment conditions

https://doi.org/10.18412/1816-0387-2025-1-10-22

Abstract

To improve the efficiency of catalysts for methane tri-reforming, the effect of pretreatment conditions of the Ce0.2Ni0.8O1.2/Al2O3 catalyst on its physicochemical and functional properties was studied. A set of methods (thermal analysis, low-temperature nitrogen adsorption, X-ray phase analysis, electron microscopy, temperature-programmed reduction with hydrogen) has established that varying the composition of the gaseous medium (oxidizing, inert, reducing) used during pretreatment at 800 °C allows one to adjust the textural, structural and redox characteristics of the catalyst and, as a consequence, its functional properties. It has been shown that in the series of compositions of the gas environment used in the pretreatment of the catalyst, oxidative → inert → reducing, an increase in the specific surface area and dispersion of the active component is observed, but a decrease in the resistance of the sample to reoxidation and coking. It has been established that the highest and most stable performance of the methane tri-reforming process (H2 yield – 86 % at CH4 conversion – 95 %) is provided by the catalyst after pretreatment in an inert environment due to the implementation of the optimal degree of metal-support interaction and an increase in the concentration of centers involved in CO2 activation.

About the Authors

E. V. Matus
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


E. N. Kovalenko
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State Technical University
Russian Federation


O. B. Sukhova
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


I. Z. Ismagilov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. A. Pochtar
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. V. Kapishnikov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


O. A. Stonkus
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


S. A. Yashnik
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


M. A. Kerzhentsev
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


S. R. Khairulin
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


References

1. https://www.mordorintelligence.com/industry-reports/syngas-market – дата обращения 05.06.2024.

2. https://www.airproducts.com/ – дата обращения 05.06.2024.

3. https://www.airliquide.com/ – дата обращения 05.06.2024.

4. https://www.linde.com/ – дата обращения 05.06.2024.

5. https://www.groupmaire.com/en/ – дата обращения 05.06.2024.

6. https://www.ten.com/en/markets/low-carbon-ammonia – дата обращения 05.06.2024.

7. Yin J., Su S., Bae J.S., Yu X.X., Cunnington M., Jin Y. // Energy and Fuels. 2020. V. 34. P. 655–664. https://doi.org/10.1021/acs.energyfuels.9b03076

8. Ahmed U., Hussain M.A., Bilal M., Zeb H., Zahid U., Onaizi S.A., Jameel A.G.A. // Sustain. 2021. V. 13. P. 1–15. https://doi.org/10.3390/su131910724

9. Алдошин С.М., Арутюнов В.С., Савченко В.И., Седов И.В., Никитин А.В., Фокин И.Г. // Химическая физика. 2021. T. 40. C. 46–54. https://doi.org/10.31857/s0207401x21050034

10. Недоливко В.В., Засыпалов Г.О., Вутолкина А.В., Гущин П.А., Винокуров В.А., Куликов Л.А., Егазарьянц С.В., Караханов Э.А., Максимов А.Л., Глотов А.П. // Журнал прикладной химии. 2020. Т. 93 С. 763–787. https://doi.org/10.31857/S0044461820060018

11. Baltrusaitis J., Luyben W.L. // ACS Sustain. Chem. Eng. 2015. V. 3. P. 2100–2111. https://doi.org/10.1021/acssuschemeng.5b00368

12. Gao Y., Wang M., Raheem A., Wang F., Wei J., Xu D., Song X., Bao W., Huang A., Zhang S., Zhang H. // ACS Omega. 2023. V. 8. P. 31620–31620. https://doi.org/10.1021/acsomega.3c03050

13. Потемкин Д.И., Усков С.И., Горлова А.М., Кириллов В.А., Шигаров А.Б., Брайко А.С., Рогожников В.Н., Снытников П.В., Печенкин А.А., Беляев В.Д., Пименов А.А., Собянин В.А. // Катализ в промышленности. 2020. T. 20. № 3. С. 184–189. https://doi.org/10.18412/1816-0387-2020-3-184-189

14. Арутюнов В.С., Никитин А.В., Стрекова Л.Н., Савченко В.И., Седов И.В., Озерский А.В., Зимин Я.С. // Журнал технической физики. 2021. Т. 91. С. 713–720. https://doi.org/10.21883/JTF.2021.05.50681.265-20

15. Levi P.G., Cullen J.M. // Environ. Sci. Technol. 2018. V. 52. P. 1725–1734. https://doi.org/10.1021/acs.est.7b04573

16. Пинаева Л.Г., Носков А.С. // Катализ в промышленности. 2021. Т. 21. № 5. С. 308–330. https://doi.org/10.18412/1816-0387-2021-5-308-330

17. Alli R.D., de Souza P.A.L., Mohamedali M., Virla L.D., Mahinpey N. // Catal Today. 2023. V. 407. P. 107–124. https://doi.org/10.1016/j.cattod.2022.02.006

18. Amin A. // Int. J. Hydrogen Energy. 2024. V. 65. P. 271–291. https://doi.org/10.1016/j.ijhydene.2024.03.372

19. https://www.topsoe.com/products/equipment/syncortm-autothermal-reformer-atr – дата обращения 05.06.2024.

20. Mortensen P.M., Dybkjær I. // Appl. Catal. A Gen. 2015. V. 495. P. 141–151. https://doi.org/10.1016/j.apcata.2015.02.022

21. https://www.midrex.com/technology/midrex-process/ – дата обращения 05.06.2024.

22. https://www.engineering.linde.com/dryref – дата обращения 05.06.2024.

23. http://niap-kt.ru/ – дата обращения 05.06.2024.

24. http://azkios.ru/product.files/konver.htm – дата обращения 05.06.2024.

25. Jang J., Han M. // Int. J. Hydrogen Energy. 2022. V. 47. P. 9139–9155. https://doi.org/10.1016/j.ijhydene.2021.12.266

26. https://rapu.ru/upload/guide_its_ndt_2_2019.pdf – дата обращения 08.07.2024.

27. https://makston-engineering.ru/f/metanol_sravnenie_tehnologii.pdf?dl=1 – дата обращения 08.07.2024.

28. Walker D.M., Pettit S.L., Wolan J.T., Kuhn J.N. //Appl. Catal. A Gen. 2012. V. 445–446. P. 61–68. https://doi.org/10.1016/j.apcata.2012.08.015

29. Izquierdo U., Barrio V.L., Requies J., Cambra J.F., Güemez M.B., Arias P.L. // Int. J. Hydrogen Energy. 2013. V. 38. P. 7623–7631. https://doi.org/10.1016/j.ijhydene.2012.09.107

30. Schmal M., Toniolo F.S., Kozonoe C.E. // Appl. Catal. A Gen. 2018. V. 568. P. 23–42. https://doi.org/10.1016/j.apcata.2018.09.017

31. Pham X.H., Ashik U.P.M., Hayashi J.I., Pérez Alonso A., Pla D., Gómez M., Minh D.P. // Appl. Catal. A Gen. 2021. V. 623. Art. 118286. https://doi.org/10.1016/j.apcata.2021.118286

32. García-vargas J.M., Valverde J.L., Lucas-Consuegra A., Gómez-Monedero B., Sánchez P., Dorado F. // Appl. Catal. A Gen. 2012. V. 431–432. P. 49–56. https://doi.org/10.1016/j.apcata.2012.04.016

33. Pino L., Vita A., Laganà M., Recupero V. // Appl. Catal. B Environ. 2014. V. 148–149. P. 91–105. https://doi.org/10.1016/j.apcatb.2013.10.043

34. Lino A.V.P., Rodella C.B., Assaf E.M., Assaf J.M. // Int. J. Hydrogen Energy. 2020. V. 45. P. 8418–8432. https://doi.org/10.1016/j.ijhydene.2020.01.002

35. Lucrédio A.F., Assaf J.M., Assaf E.M. // Fuel Process. Technol. 2012. V. 102. P. 124–131. https://doi.org/10.1016/j.fuproc.2012.04.020

36. Matus E., Sukhova O., Kerzhentsev M., Ismagilov I., Yashnik S., Ushakov V., Stonkus O., Gerasimov E., Nikitin A., Bharali P., Ismagilov Z. // Catalysts. 2022. V. 12. Art. 1493. https://doi.org/10.3390/CATAL12121493

37. Sun X., Chen H., Yin Y., Curnan M.T., Han J.W., Chen Y., Ma Z. // Small. 2021. V. 17. P. 1–37. https://doi.org/10.1002/smll.202005383

38. Matus E.V., Ismagilov I.Z., Yashnik S.A., Ushakov V.A., Prosvirin I.P., Kerzhentsev M.A., Ismagilov Z.R. // Int. J. Hydrogen Energy. 2020. V. 45. P. 33352–33369. https://doi.org/10.1016/j.ijhydene.2020.09.011

39. Керженцев М.А., Матус Е.В., Рундау И.А., Кузнецов В.В., Исмагилов И.З., Ушаков В.А., Яшник С.А., Исмагилов З.Р. // Кинетика и катализ. 2017. V. 614–622. https://doi.org/10.7868/S0453881117050112

40. Juan-Juan J., Román-Martínez M.C., Illán-Gómez M.J. // Appl. Catal. A Gen. 2009. V. 355. P. 27–32. https://doi.org/10.1016/j.apcata.2008.10.058

41. Zhao J., Zhou W., Ma J. // Chinese J. Catal. 2013. V. 34. P. 1826–1832. https://doi.org/10.1016/j.fuproc.2014.10.031

42. Gangarajula Y., Hong F., Li Q., Jiang X., Liu W., Akri M., Su Y., Zhang Y., Li L., Qiao В. // Appl. Catal. B Environ. 2024. V. 343. Art. 123503. https://doi.org/10.1016/j.apcatb.2023.123503

43. Al-Fatesh A.S.A., Fakeeha A.H. // J. Saudi Chem. Soc. 2012. V. 16. P. 55–61. https://doi.org/10.1016/j.jscs.2010.10.020

44. Muñoz M., Moreno S., Molina R. // Int. J. Hydrogen Energy. 2014. V. 39. P. 10074–10089. https://doi.org/10.1016/j.ijhydene.2014.04.131

45. https://www.topsoe.com/our-resources/knowledge/our-products/catalysts/rk-211?hsLang=en – дата обращения 05.06.2024.

46. Matus E.V., Kerzhentsev M.A., Nikitin A.P., Sozinov S.A., Ismagilov Z.R. // Eurasian Chem.-Technol. J. 2023. V. 25. P. 103–113. https://doi.org/10.18321/ectj1500

47. Matus E., Kerzhentsev M., Ismagilov I., Nikitin A., Sozinov S., Ismagilov Z. // Energies. 2023. V. 16. № 7. Art. 2993. https://doi.org/10.3390/en16072993

48. Matus Е.V., Kerzhentsev M.A., Nikitin A.P., Sozinov S.A., Ismagilov Z.R. // Eurasian Chem.-Technol. J. 2024. V. 26. P. 3–14. https://doi.org/10.18321/ectj1559

49. Матус Е.В., Коваленко Е.Н., Капишников А.В., Леонова А.А., Никитин А.П., Стонкус О.А., Ушаков В.А., Яшник С.А., Сухова О.Б., Керженцев М.А. // Журнал структурной химии. 2024. Т. 65. Art. 131836. https://doi.org/10.26902/JSC_id131836

50. Сальников А.В , Матус Е.В., Керженцев М.А., Хайрулин С.Р. // Химия в интересах устойчивого развития. 2024. Т. 32. С. 397–405. https://doi.org/10.15372/KhUR2024569.

51. Zhu J., Zhang D., King K.D. // Fuel 2001. V. 80. P. 899–905. https://doi.org/10.1016/S0016-2361(00)00165-4

52. Sing K.S.W. // Pure Appl. Chem. 1985. 57. P. 603–619. https://doi.org/doi.org/10.1351/pac198557040603

53. Lamonier C., Ponchel A., D’Huysser A., Jalowiecki-Duhamel L. // Catal. Today. 1999. V. 50. P. 247–259. https://doi.org/10.1016/S0920-5861(98)00507-0

54. Jalowiecki-Duhamel L., Zarrou H., D’Huysser A. // Int. J. Hydrogen Energy. 2008. V. 33. P. 5527–5534. https://doi.org/10.1016/j.ijhydene.2008.07.031

55. Deng J., Chu W., Wang B., Yang W., Zhao X.S. // Catal. Sci. Technol. 2016. V. 6. P. 851–862. https://doi.org/10.1039/C5CY00893J.

56. Fang W., Pirez C., Paul S., Capron M., Jobic H., Dumeignil F., Dr. Louise Jalowiecki-Duhamel // ChemCatChem 2013. V. 5. P. 2207–2216. https://doi.org/10.1002/cctc.201300087

57. Shan W., Luo M., Ying P., Shen W., Li C. // Appl. Catal. A Gen. 2003. V. 246. P. 1–9. https://doi.org/10.1016/S0926-860X(02)00659-2

58. Jiménez-González C., Boukha Z., Rivas B., José J., Ángel M., González-Velasco J.R., Gutiérrez-Ortiz J.I., López-Fonseca R. // Appl. Catal. A Gen. 2013. V. 466. P. 9–20. https://doi.org/10.1016/j.apcata.2013.06.017

59. Damaskinos C.M., Zavašnik J., Djinović P., Efstathiou A.M. // Appl. Catal. B Environ. 2021. V. 296. Art. 120321. https://doi.org/10.1016/j.apcatb.2021.120321

60. Fonseca R.O., Ponseggi A.R., Rabelo-Neto R.C., Simões R.C.C., Mattos L.V., Noronha F.B. // J. CO2 Util. 2022. V. 57. Art. 101880. https://doi.org/10.1016/j.jcou.2021.101880


Review

For citations:


Matus E.V., Kovalenko E.N., Sukhova O.B., Ismagilov I.Z., Pochtar A.A., Kapishnikov A.V., Stonkus O.A., Yashnik S.A., Kerzhentsev M.A., Khairulin S.R. Development of supported nickel-containing catalysts for methane tri-reforming: influence of pretreatment conditions. Kataliz v promyshlennosti. 2025;25(1):10-22. (In Russ.) https://doi.org/10.18412/1816-0387-2025-1-10-22

Views: 150


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)