

Development of supported nickel-containing catalysts for methane tri-reforming: influence of pretreatment conditions
https://doi.org/10.18412/1816-0387-2025-1-10-22
Abstract
To improve the efficiency of catalysts for methane tri-reforming, the effect of pretreatment conditions of the Ce0.2Ni0.8O1.2/Al2O3 catalyst on its physicochemical and functional properties was studied. A set of methods (thermal analysis, low-temperature nitrogen adsorption, X-ray phase analysis, electron microscopy, temperature-programmed reduction with hydrogen) has established that varying the composition of the gaseous medium (oxidizing, inert, reducing) used during pretreatment at 800 °C allows one to adjust the textural, structural and redox characteristics of the catalyst and, as a consequence, its functional properties. It has been shown that in the series of compositions of the gas environment used in the pretreatment of the catalyst, oxidative → inert → reducing, an increase in the specific surface area and dispersion of the active component is observed, but a decrease in the resistance of the sample to reoxidation and coking. It has been established that the highest and most stable performance of the methane tri-reforming process (H2 yield – 86 % at CH4 conversion – 95 %) is provided by the catalyst after pretreatment in an inert environment due to the implementation of the optimal degree of metal-support interaction and an increase in the concentration of centers involved in CO2 activation.
About the Authors
E. V. MatusRussian Federation
E. N. Kovalenko
Russian Federation
O. B. Sukhova
Russian Federation
I. Z. Ismagilov
Russian Federation
A. A. Pochtar
Russian Federation
A. V. Kapishnikov
Russian Federation
O. A. Stonkus
Russian Federation
S. A. Yashnik
Russian Federation
M. A. Kerzhentsev
Russian Federation
S. R. Khairulin
Russian Federation
References
1. https://www.mordorintelligence.com/industry-reports/syngas-market – дата обращения 05.06.2024.
2. https://www.airproducts.com/ – дата обращения 05.06.2024.
3. https://www.airliquide.com/ – дата обращения 05.06.2024.
4. https://www.linde.com/ – дата обращения 05.06.2024.
5. https://www.groupmaire.com/en/ – дата обращения 05.06.2024.
6. https://www.ten.com/en/markets/low-carbon-ammonia – дата обращения 05.06.2024.
7. Yin J., Su S., Bae J.S., Yu X.X., Cunnington M., Jin Y. // Energy and Fuels. 2020. V. 34. P. 655–664. https://doi.org/10.1021/acs.energyfuels.9b03076
8. Ahmed U., Hussain M.A., Bilal M., Zeb H., Zahid U., Onaizi S.A., Jameel A.G.A. // Sustain. 2021. V. 13. P. 1–15. https://doi.org/10.3390/su131910724
9. Алдошин С.М., Арутюнов В.С., Савченко В.И., Седов И.В., Никитин А.В., Фокин И.Г. // Химическая физика. 2021. T. 40. C. 46–54. https://doi.org/10.31857/s0207401x21050034
10. Недоливко В.В., Засыпалов Г.О., Вутолкина А.В., Гущин П.А., Винокуров В.А., Куликов Л.А., Егазарьянц С.В., Караханов Э.А., Максимов А.Л., Глотов А.П. // Журнал прикладной химии. 2020. Т. 93 С. 763–787. https://doi.org/10.31857/S0044461820060018
11. Baltrusaitis J., Luyben W.L. // ACS Sustain. Chem. Eng. 2015. V. 3. P. 2100–2111. https://doi.org/10.1021/acssuschemeng.5b00368
12. Gao Y., Wang M., Raheem A., Wang F., Wei J., Xu D., Song X., Bao W., Huang A., Zhang S., Zhang H. // ACS Omega. 2023. V. 8. P. 31620–31620. https://doi.org/10.1021/acsomega.3c03050
13. Потемкин Д.И., Усков С.И., Горлова А.М., Кириллов В.А., Шигаров А.Б., Брайко А.С., Рогожников В.Н., Снытников П.В., Печенкин А.А., Беляев В.Д., Пименов А.А., Собянин В.А. // Катализ в промышленности. 2020. T. 20. № 3. С. 184–189. https://doi.org/10.18412/1816-0387-2020-3-184-189
14. Арутюнов В.С., Никитин А.В., Стрекова Л.Н., Савченко В.И., Седов И.В., Озерский А.В., Зимин Я.С. // Журнал технической физики. 2021. Т. 91. С. 713–720. https://doi.org/10.21883/JTF.2021.05.50681.265-20
15. Levi P.G., Cullen J.M. // Environ. Sci. Technol. 2018. V. 52. P. 1725–1734. https://doi.org/10.1021/acs.est.7b04573
16. Пинаева Л.Г., Носков А.С. // Катализ в промышленности. 2021. Т. 21. № 5. С. 308–330. https://doi.org/10.18412/1816-0387-2021-5-308-330
17. Alli R.D., de Souza P.A.L., Mohamedali M., Virla L.D., Mahinpey N. // Catal Today. 2023. V. 407. P. 107–124. https://doi.org/10.1016/j.cattod.2022.02.006
18. Amin A. // Int. J. Hydrogen Energy. 2024. V. 65. P. 271–291. https://doi.org/10.1016/j.ijhydene.2024.03.372
19. https://www.topsoe.com/products/equipment/syncortm-autothermal-reformer-atr – дата обращения 05.06.2024.
20. Mortensen P.M., Dybkjær I. // Appl. Catal. A Gen. 2015. V. 495. P. 141–151. https://doi.org/10.1016/j.apcata.2015.02.022
21. https://www.midrex.com/technology/midrex-process/ – дата обращения 05.06.2024.
22. https://www.engineering.linde.com/dryref – дата обращения 05.06.2024.
23. http://niap-kt.ru/ – дата обращения 05.06.2024.
24. http://azkios.ru/product.files/konver.htm – дата обращения 05.06.2024.
25. Jang J., Han M. // Int. J. Hydrogen Energy. 2022. V. 47. P. 9139–9155. https://doi.org/10.1016/j.ijhydene.2021.12.266
26. https://rapu.ru/upload/guide_its_ndt_2_2019.pdf – дата обращения 08.07.2024.
27. https://makston-engineering.ru/f/metanol_sravnenie_tehnologii.pdf?dl=1 – дата обращения 08.07.2024.
28. Walker D.M., Pettit S.L., Wolan J.T., Kuhn J.N. //Appl. Catal. A Gen. 2012. V. 445–446. P. 61–68. https://doi.org/10.1016/j.apcata.2012.08.015
29. Izquierdo U., Barrio V.L., Requies J., Cambra J.F., Güemez M.B., Arias P.L. // Int. J. Hydrogen Energy. 2013. V. 38. P. 7623–7631. https://doi.org/10.1016/j.ijhydene.2012.09.107
30. Schmal M., Toniolo F.S., Kozonoe C.E. // Appl. Catal. A Gen. 2018. V. 568. P. 23–42. https://doi.org/10.1016/j.apcata.2018.09.017
31. Pham X.H., Ashik U.P.M., Hayashi J.I., Pérez Alonso A., Pla D., Gómez M., Minh D.P. // Appl. Catal. A Gen. 2021. V. 623. Art. 118286. https://doi.org/10.1016/j.apcata.2021.118286
32. García-vargas J.M., Valverde J.L., Lucas-Consuegra A., Gómez-Monedero B., Sánchez P., Dorado F. // Appl. Catal. A Gen. 2012. V. 431–432. P. 49–56. https://doi.org/10.1016/j.apcata.2012.04.016
33. Pino L., Vita A., Laganà M., Recupero V. // Appl. Catal. B Environ. 2014. V. 148–149. P. 91–105. https://doi.org/10.1016/j.apcatb.2013.10.043
34. Lino A.V.P., Rodella C.B., Assaf E.M., Assaf J.M. // Int. J. Hydrogen Energy. 2020. V. 45. P. 8418–8432. https://doi.org/10.1016/j.ijhydene.2020.01.002
35. Lucrédio A.F., Assaf J.M., Assaf E.M. // Fuel Process. Technol. 2012. V. 102. P. 124–131. https://doi.org/10.1016/j.fuproc.2012.04.020
36. Matus E., Sukhova O., Kerzhentsev M., Ismagilov I., Yashnik S., Ushakov V., Stonkus O., Gerasimov E., Nikitin A., Bharali P., Ismagilov Z. // Catalysts. 2022. V. 12. Art. 1493. https://doi.org/10.3390/CATAL12121493
37. Sun X., Chen H., Yin Y., Curnan M.T., Han J.W., Chen Y., Ma Z. // Small. 2021. V. 17. P. 1–37. https://doi.org/10.1002/smll.202005383
38. Matus E.V., Ismagilov I.Z., Yashnik S.A., Ushakov V.A., Prosvirin I.P., Kerzhentsev M.A., Ismagilov Z.R. // Int. J. Hydrogen Energy. 2020. V. 45. P. 33352–33369. https://doi.org/10.1016/j.ijhydene.2020.09.011
39. Керженцев М.А., Матус Е.В., Рундау И.А., Кузнецов В.В., Исмагилов И.З., Ушаков В.А., Яшник С.А., Исмагилов З.Р. // Кинетика и катализ. 2017. V. 614–622. https://doi.org/10.7868/S0453881117050112
40. Juan-Juan J., Román-Martínez M.C., Illán-Gómez M.J. // Appl. Catal. A Gen. 2009. V. 355. P. 27–32. https://doi.org/10.1016/j.apcata.2008.10.058
41. Zhao J., Zhou W., Ma J. // Chinese J. Catal. 2013. V. 34. P. 1826–1832. https://doi.org/10.1016/j.fuproc.2014.10.031
42. Gangarajula Y., Hong F., Li Q., Jiang X., Liu W., Akri M., Su Y., Zhang Y., Li L., Qiao В. // Appl. Catal. B Environ. 2024. V. 343. Art. 123503. https://doi.org/10.1016/j.apcatb.2023.123503
43. Al-Fatesh A.S.A., Fakeeha A.H. // J. Saudi Chem. Soc. 2012. V. 16. P. 55–61. https://doi.org/10.1016/j.jscs.2010.10.020
44. Muñoz M., Moreno S., Molina R. // Int. J. Hydrogen Energy. 2014. V. 39. P. 10074–10089. https://doi.org/10.1016/j.ijhydene.2014.04.131
45. https://www.topsoe.com/our-resources/knowledge/our-products/catalysts/rk-211?hsLang=en – дата обращения 05.06.2024.
46. Matus E.V., Kerzhentsev M.A., Nikitin A.P., Sozinov S.A., Ismagilov Z.R. // Eurasian Chem.-Technol. J. 2023. V. 25. P. 103–113. https://doi.org/10.18321/ectj1500
47. Matus E., Kerzhentsev M., Ismagilov I., Nikitin A., Sozinov S., Ismagilov Z. // Energies. 2023. V. 16. № 7. Art. 2993. https://doi.org/10.3390/en16072993
48. Matus Е.V., Kerzhentsev M.A., Nikitin A.P., Sozinov S.A., Ismagilov Z.R. // Eurasian Chem.-Technol. J. 2024. V. 26. P. 3–14. https://doi.org/10.18321/ectj1559
49. Матус Е.В., Коваленко Е.Н., Капишников А.В., Леонова А.А., Никитин А.П., Стонкус О.А., Ушаков В.А., Яшник С.А., Сухова О.Б., Керженцев М.А. // Журнал структурной химии. 2024. Т. 65. Art. 131836. https://doi.org/10.26902/JSC_id131836
50. Сальников А.В , Матус Е.В., Керженцев М.А., Хайрулин С.Р. // Химия в интересах устойчивого развития. 2024. Т. 32. С. 397–405. https://doi.org/10.15372/KhUR2024569.
51. Zhu J., Zhang D., King K.D. // Fuel 2001. V. 80. P. 899–905. https://doi.org/10.1016/S0016-2361(00)00165-4
52. Sing K.S.W. // Pure Appl. Chem. 1985. 57. P. 603–619. https://doi.org/doi.org/10.1351/pac198557040603
53. Lamonier C., Ponchel A., D’Huysser A., Jalowiecki-Duhamel L. // Catal. Today. 1999. V. 50. P. 247–259. https://doi.org/10.1016/S0920-5861(98)00507-0
54. Jalowiecki-Duhamel L., Zarrou H., D’Huysser A. // Int. J. Hydrogen Energy. 2008. V. 33. P. 5527–5534. https://doi.org/10.1016/j.ijhydene.2008.07.031
55. Deng J., Chu W., Wang B., Yang W., Zhao X.S. // Catal. Sci. Technol. 2016. V. 6. P. 851–862. https://doi.org/10.1039/C5CY00893J.
56. Fang W., Pirez C., Paul S., Capron M., Jobic H., Dumeignil F., Dr. Louise Jalowiecki-Duhamel // ChemCatChem 2013. V. 5. P. 2207–2216. https://doi.org/10.1002/cctc.201300087
57. Shan W., Luo M., Ying P., Shen W., Li C. // Appl. Catal. A Gen. 2003. V. 246. P. 1–9. https://doi.org/10.1016/S0926-860X(02)00659-2
58. Jiménez-González C., Boukha Z., Rivas B., José J., Ángel M., González-Velasco J.R., Gutiérrez-Ortiz J.I., López-Fonseca R. // Appl. Catal. A Gen. 2013. V. 466. P. 9–20. https://doi.org/10.1016/j.apcata.2013.06.017
59. Damaskinos C.M., Zavašnik J., Djinović P., Efstathiou A.M. // Appl. Catal. B Environ. 2021. V. 296. Art. 120321. https://doi.org/10.1016/j.apcatb.2021.120321
60. Fonseca R.O., Ponseggi A.R., Rabelo-Neto R.C., Simões R.C.C., Mattos L.V., Noronha F.B. // J. CO2 Util. 2022. V. 57. Art. 101880. https://doi.org/10.1016/j.jcou.2021.101880
Review
For citations:
Matus E.V., Kovalenko E.N., Sukhova O.B., Ismagilov I.Z., Pochtar A.A., Kapishnikov A.V., Stonkus O.A., Yashnik S.A., Kerzhentsev M.A., Khairulin S.R. Development of supported nickel-containing catalysts for methane tri-reforming: influence of pretreatment conditions. Kataliz v promyshlennosti. 2025;25(1):10-22. (In Russ.) https://doi.org/10.18412/1816-0387-2025-1-10-22