Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Preparation of Ethylene-1-Hexene Copolymers with Bimodal Molecular Weight Distribution and Optimal Branching Distribution on a Highly Active Supported Vanadium-Magnesium Catalyst

https://doi.org/10.18412/1816-0387-2025-1-23-33

Abstract

Using a new modification of a highly active vanadium-magnesium catalyst (VMC), data were obtained on the effect of hydrogen and hexene-1 content on the catalyst activity and the molecular structure of the resulting polymers. It was found that the formation of polyethylene (PE) with a wide bimodal molecular weight distribution (MWD) on VMC is associated with the presence of two groups of active centers in these catalysts, differing in their reactivity in the polymer chain transfer reaction with hydrogen. It was also found that the presence of hexene-1 during copolymerization leads to an additional broadening of the MWD of the copolymer due to a predominant decrease in the molecular weight of the copolymer in the low-molecular region. At the same time, the active centers of the VMC, producing a high-molecular polymer, practically do not participate in the chain transfer reaction with hexene-1. At the same time, these centers are more reactive in the reaction of insertion of hexene-1, which leads to an increased content of butyl branches in the high-molecular fraction of the copolymers. The kinetic features of highly active VMCs found indicate their promise for the production of pipe and film grades of PE using a one-reactor scheme instead of a two-reactor scheme used to produce bimodal PE on traditional titanium-magnesium catalysts.

About the Authors

T. B. Mikenas
Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Russian Federation


V. A. Zakharov
Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Russian Federation


M. A. Matsko
Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Russian Federation


References

1. Spalding M. A., Chatterjee A. (Eds.). Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications and Markets Set. Scrivener Publishing. 2017. LLC. doi:10.1002/9781119159797.

2. Albunia A. R., Prades F., Jeremic D. (Eds.). Multimodal Polymers with Supported Catalysts, Springer, Cham, 2019, P. 243 – 265. https://doi.org/10.1007/978-3-030-03476-4.

3. Nowlin T.E. Business and technology of the global polyethylene industry. An in-depth look at the history, technology, catalysts, and modern commercial manufacture of polyethylene and its products. ISBN 978-1-118-94598-8. WILEY Scrivener Publishing. 2014, P. 403.

4. Sauter D., Taoufik M., Boisson C. Polymers. 2017. V. 9. P. 185. https://doi.org/10.3390/polym9060185.

5. Plastics Europe: Plastics - The Facts 2020. Available online: https://plasticseurope.org/de/wp-content/uploads/sites/3/2021/11/ Plastics_the_facts-WEB-2020 version Jun21_final.pdf (accessed on 27 June 2022).

6. Zhang M. Q., Lynch D. T., Wanke S. E. // J. Appl. Polym.Sci. 2000. V. 75. №. 7. P. 960 – 967. https://doi.org/10.1002/(sici)1097-4628(20000214)75:7<960::aid-app13>3.0.co;2-r.

7. Faldi A., Soares J. B. P. // Polymer. 2001. V. 42. № 7. P. 3057 - 3066. https://doi.org/10.1016/S0032-3861(00)00664-9.

8. Alt F. P., Bohm L. L., Enderle H. F., Berthold J. // Macromol. Symp. 2001. V. 163. №. P. 135 – 143. https://doi.org/10.1002/1521-3900(200101)163:1<135::aid-masy135>3.0.co;2-7.

9. Shan C. L. P., Soares J. B. P., Penlidis A. // Polymer. 2002. V. 43. №. 3. P. 767 – 773. https://doi.org/10.1002/pola.10533.

10. DesLauriers P. J., McDaniel M. P.// J. Polym. Sci. A.: Polym. Chem. 2007. V. 45. № 15. P. 3135 – 3149. https://doi.org/10.1002/pola.22174.

11. Bialek N., Czaja K. // Polymer. 2000. V. 41. P. 7899. https://doi.org/10.1016/S0032-3861(00)00153-1.

12. Alizadeh A., Richardson L., Xu J., McCartney S., Marand H., Cheung Y.W., Chum S. // Macromolecules. 1999. V. 32. P. 622. http://dx.doi.org/10.1021/ma990669u.

13. Soares J. B. P. // Macromol. Symp. 2007. V. 257. P.1-12.

14. Cipriani C., Trischman C. A. // Chem. Eng. 1982. V. 89. № 10. P. 66 - 67.

15. Budke C. C., Peat I. R. // Plastics Eng. 1992. V. 48. № P. 19.

16. Cho H. S., Chung J. S., Han J. H., Ko Y. G., Lee W. Y. // J. Appl. Polym. Sci. 1998. V. 70. P.1707 – 1715.

17. Zucchini U., Cecchini G. // Adv. Polym. Sci. 1983. V.51. P. 109. https://doi.org/10.1007/BFb0017586.

18. Микенас Т. Б., Захаров В. А. // Высокомолекулярные соединения, Сер. Б. 1984. Т.26. С. 483 – 485.

19. Karol F. G., Cann K. J., Wagner B. E. Development with high-activity titanium, vanadium and chromium catalyst in ethylene polymerization. Transition metals and organometallics as catalysts for olefin polymerization. In: Proceeding of an international symposium. 1988. Humburg. Germany, P.149 – 161. https://doi.org/10.1007/978-3-642-83276-5_16.

20. Spitz R., Patin M., Robert P., Masson P., Dupuy J. The control of molecule weight distribution in Ziegler–Natta catalysis In: Catalyst Design for Tailor-made Polyolefins. 1994. Kanazawa, Japan.

21. Захаров В. А., Ечевская Л. Г. // Высокомолекулярные соединения, Сер. Б. 1987. Т. 39. С. 291 – 294.

22. Захаров В. А., Ечевская Л. Г., Микенас Т. Б. // Высокомолекулярные соединения, Сер. Б. 1991. Т. 33. С. 102-104.

23. Zakharov V. A., Echevskaya L. G., Mikenas T. B., Matsko M. A., Tregubov A. A., Vanina M. P., Nikolaeva M. I. // Chin. J. Polym. Sci. 2008. V. 26. P. 553 –560. https://doi.org/10.1142/S0256767908003266.

24. Wang D., Zhao Z., Mikenas T. B., Xiaomei L., Echevskaya L. G., Chengcai Z., Matsko M.A., Wu W. // Polym. Chem. 2012. V. 3. P. 2377 – 2382. https://doi.org/10.1039/C2PY20163A

25. Мацько М. А., Ечевская Л. Г., Микенас Т. Б., Николаева М. И., Ванина М. П., Захаров В. А. // Катализ в промышленности. 2011. Т. 3 № 2. С. 109 – 115. https://doi.org/10.1134/S2070050411020097.

26. Matsko M. A., Echevskaya L. G., Vanina M. P., Nikolaeva M. I., Mikenas T. B., Zakharov V. A. // J. Appl. Polym. Sci. 2012. V. 126. P. 2017 – 2023. https://doi.org/10.1002/app.36643.

27. Echevskaya L. G., Zakharov V. A., Bukatov G. D. // React. Kinet. Catal. Lett. 1987. V. 34. P. 99 – 104. https://doi.org/10.1007/BF02069208.

28. Bohm L. L. // Macromol. Chem. 1981. V. 182. P. 3291 – 3310. https://doi.org/10.1002/pol.1950.120050210.

29. Mikenas T. B., Zakharov V. A., Guan P., Matsko M. A. // Appl. Sci. 2023. V. 13. P. 5030. https://doi.org/10.3390/ app13085030.

30. Микенас Т. Б., Захаров В. А., Никитин В. Е., Ечевская Л. Г., Мацько М. А. // Катализ в промышленности. 2011. Т. 3. № 2. С.122 – 127. https://doi.org/ 10.1134/S2070050411020103.

31. Патент RU 2682163C1, опубл. 15.03.2019.

32. Barabanov A. A., Bukatov G. D., Zakharov V. A., Semikolenova N. V., Echevskaja L. G., Matsko M. A. // Macromol. Chem. Phys. 2005. V. 206. P. 2292 – 2298. https://doi.org/10.1002/macp.200500310/

33. Randall J. C. // Macromolecule. 1978. V. 11. P. 33 – 36. https://doi.org/10.1021/ma60063a032.

34. Nikolaeva M. I., Matsko M. A., Mikenas T. B., Echevskaya L. G., Zakharov V. A. // J. Appl. Polym. Sci. 2012. V. 125. P. 2034 – 2041. https://doi.org/10.1002/app.36334.

35. Echevskaya L. G., Zakharov V. A., Golovin A. V., Mikenas T. B. // Macromol. Chem. Phys. 1999. V. 200. P. 1434 – 1438. https://doi.org/10.1002/(SICI)1521-3935(19990601)200:6<1434::AID-MACP1434>3.0.CO;2-4.

36. Mikenas T. B., Zakharov V. A., Echevskaya L. G., Matsko M. A. // Macromol. Chem. Phys. 2001. V. 202. P. 475 – 481. https://doi.org/10.1002/1521-3935(20010201)202:4<475::AID-MACP475>3.0.CO;2-V.

37. Matsko M. A., Bukatov G. D., Mikenas T. B., Zakharov V. A. // Macromol. Chem. Phys. 2001. V. 202. P. 1435 – 1479. https://doi.org/10.1002/1521-3935(20010501)202:8<1435::AID-MACP1435>3.0.CO;2-#.

38. Matsko M. A., Echevskaya L. G., Zakharov V. A., Nikolaeva M. I., Mikenas T. B., Vanina M. P. // Macromol. Symp. 2009. V. 282. P. 157– 166. https://doi.org/10.1002/masy.200950816.

39. Garoff T., Mannonen L., Vaananen M., Eriksson V., Kallio K., Waldvogel P. // J. Appl. Polym. Sci. 2010. V. 115. P. 826-836. https://doi.org/10.1002/app.29701.

40. Nikolaeva M. I., Matsko M. A., Mikenas T. B., Echevskaya L. G., Zakharov V. A. // J. Appl. Polym. Sci. 2012. V. 125. P. 2042 –2049. https://doi.org/10.1002/app.36333.

41. Ечевская Л. Г., Захаров В. А. // Высокомолекулярные соединения, Сер. А и Б. 1996. Т. 38. С. 959 – 963.


Review

For citations:


Mikenas T.B., Zakharov V.A., Matsko M.A. Preparation of Ethylene-1-Hexene Copolymers with Bimodal Molecular Weight Distribution and Optimal Branching Distribution on a Highly Active Supported Vanadium-Magnesium Catalyst. Kataliz v promyshlennosti. 2025;25(1):23-33. (In Russ.) https://doi.org/10.18412/1816-0387-2025-1-23-33

Views: 138


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)