

Нестационарные циклические технологии разложения сероводорода на водород и серу
https://doi.org/10.18412/1816-0387-2025-1-34-49
Аннотация
Сероводород является весьма привлекательным сырьем для производства водорода. Энергия диссоциации H2S (21 кДж/моль при комнатной температуре) намного ниже, чем у воды (286 кДж/моль) или даже углеводородов (76 кДж/моль для метана); более того, энергия связи водорода в молекуле H2S имеет наименьшее значение среди всех природных соединений водорода. Тем не менее, сероводород на сегодняшний день так и не нашел широкого промышленного применения в качестве сырья для производства водорода. Главным препятствием на пути создания эффективной технологии для этой цели являются весьма жесткие термодинамические ограничения реакции разложения сероводорода на элементы: H2S ↔ S + Н2 – Q. Настоящий обзор посвящен анализу известных подходов к получению водорода и серы из сероводорода, их недостатков, обуславливающих неуспех предложенных ранее технологий, а также пути возможного создания эффективных процессов для этой цели. В обзоре сделан особый фокус на нестационарных циклических процессах, которые можно считать одним из наиболее перспективных путей для создания эффективной технологии разложения H2S.
Об авторах
А. Н. ЗагоруйкоРоссия
Д. О. Кондрашев
Россия
М. В. Попов
Россия
А. В. Клейменов
Россия
Список литературы
1. А.Н.Загоруйко, В.В.Шинкарев, С.В.Ванаг, Г.А.Бухтиярова. Каталитические процессы и катализаторы для получения элементарной серы из серосодержащих газов. Катализ в промышленности, 2008, спецвыпуск, с.52-62. https://doi.org/10.1134/S2070050410040082
2. A. Piéplu, O. Saur, J.C.Lavalley, O.Legendre, C.Nédez, Claus catalysis and H2S selective oxidation. Catal. Rev., Sci. Eng., v. 40, 1998, P.409-450. http://dx.doi.org/10.1080/01614949808007113
3. I.Dincer, C.Acar, Innovation in hydrogen production, International Journal of Hydrogen Energy, V. 42, 22, 2017, P. 14843-14864, https://doi.org/10.1016/j.ijhydene.2017.04.107.
4. N.Muradov, Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives, International Journal of Hydrogen Energy, V. 42, 20, 2017, P. 14058-14088, https://doi.org/10.1016/j.ijhydene.2017.04.101.
5. J. Zaman, A. Chakma, Production of hydrogen and sulfur from hydrogen sulfide, Fuel Processing Technology, V. 41, 2, 1995, P. 159-198, https://doi.org/10.1016/0378-3820(94)00085-8.
6. Minghe Lou, Ruoyu Wang, Haitao Song, Advances and challenges toward efficient utilization of H2S for H2 production, Renewable and Sustainable Energy Reviews, V.199, 2024, 114529, https://doi.org/10.1016/j.rser.2024.114529
7. Справочник химика, том 2. Под ред. Б. П. Никольского, Л: Химия, 1971 г.
8. V.E. Kaloidas, N.G. Papayannakos, Hydrogen production from the decomposition of hydrogen sulphide. Equilibrium studies on the system H2S/ H2/Si, (i = 1,…,8) in the gas phase, International Journal of Hydrogen Energy, V. 12, 6, 1987, P. 403-409, https://doi.org/10.1016/0360-3199(87)90159-5.
9. C.T. Bowman, L.G. Dodge, Kinetics of the thermal decomposition of hydrogen sulfide behind shock waves, Symposium (International) on Combustion, V. 16, 1, 1977, P. 971-982, https://doi.org/10.1016/S0082-0784(77)80389-5.
10. Теснер П.А., Немировский М.С., Мотыль Д.Н. Кинетика реакции термического разложения сероводорода при 600-1200°// Кинетика и катализ. 1990. -Т.31, № 5. - С.1232-1235.
11. V. Kaloidas, N. Papayannakos, Kinetics of thermal, non-catalytic decomposition of hydrogen sulphide, Chemical Engineering Science, V. 44, 11, 1989, P. 2493-2500, https://doi.org/10.1016/0009-2509(89)85193-0.
12. F. Bandermann, K.-B. Harder, Production of H2 via thermal decomposition of H2S and separation of H2 and H2S by pressure swing adsorption, International Journal of Hydrogen Energy, V. 7, 6, 1982, P. 471-475, https://doi.org/10.1016/0360-3199(82)90103-3.
13. Fukuda, K., Dokiya, M., Kameyama, T. and Kotera, Y., 1978. ind. Eng. Chem. Fund., 17: 243. https://doi.org/10.1021/i160068a002
14. C.P. Badra, Porous membrane reactors for hydrogen sulfide splitting, International Journal of Hydrogen Energy, V. 20, 9, 1995, P. 717-721, https://doi.org/10.1016/0360-3199(95)00006-Y.
15. J. Zaman, A. Chakma, A simulation study on the thermal decomposition of hydrogen sulfide in a membrane reactor, International Journal of Hydrogen Energy, V. 20, 1, 1995, P. 21-28, https://doi.org/10.1016/0360-3199(93)E0004-5.
16. P.P.Y Chan, K Vanidjee, A.A Adesina, P.L Rogers, Modeling and simulation of non-isothermal catalytic packed bed membrane reactor for H2S decomposition, Catalysis Today, V. 63, s 2–4, 2000, P. 379-385, https://doi.org/10.1016/S0920-5861(00)00482-X.
17. .C. Nailwal, J. Salvi, P. Chotalia, N. Goswami, L. Muhmood, Soumitra Kar, A.K. Adak, Enhanced H2S decomposition using membrane reactor, International Journal of Hydrogen Energy, 70, 2024, P. 251-261, https://doi.org/10.1016/j.ijhydene.2024.05.195.
18. Francisco J. Trujillo, Kelfin M. Hardiman, Adesoji A. Adesina, Catalytic decomposition of H2S in a double-pipe packed bed membrane reactor: Numerical simulation studies, Chemical Engineering Journal, V. 143, s 1–3, 2008, P. 273-281, https://doi.org/10.1016/j.cej.2008.02.028.
19. R.Adewale, D.J. Salem, A.S. Berrouk, S.Dara, Simulation of hydrogen production from thermal decomposition of hydrogen sulfide in sulfur recovery units, Journal of Cleaner Production, V. 112, Part 5, 2016, P. 4815-4825, https://doi.org/10.1016/j.jclepro.2015.08.021.
20. V. Palma, V. Vaiano, D. Barba, M. Colozzi, E. Palo, L. Barbato, S. Cortese, H2 production by thermal decomposition of H2S in the presence of oxygen, International Journal of Hydrogen Energy, V. 40, 1, 2015, P. 106-113, https://doi.org/10.1016/j.ijhydene.2014.11.022.
21. V. Palma, V. Vaiano, D. Barba, M. Colozzi, E. Palo, L. Barbato, S. Cortese. H2S Oxidative Decomposition for the Simultaneous Production of Sulphur and Hydrogen. Chemical Engineering Transactions, v. 52, 2016, pp.1201-1206. http://www.aidic.it/cet/16/52/201.pdf
22. D. Barba, F. Cammarota, V. Vaiano, E. Salzano, V. Palma, Experimental and numerical analysis of the oxidative decomposition of H2S, Fuel, V. 198, 2017, P. 68-75, https://doi.org/10.1016/j.fuel.2016.12.038.
23. V.Vaiano, D.Barba, V.Palma, M.Colozzi, E.Palo, L.Barbato, S.Cortese, M.Miccio, Catalytic oxidative decomposition of H2S over MoS2/γ-Al2O3, Fuel, V. 279, 2020, 118538, https://doi.org/10.1016/j.fuel.2020.118538
24. Slimane, R., Lau, F., Dihu, R., et al., Production of hydrogen by superadiabatic decomposition of hydrogen sulfide. Proc. 2002 US DOE Hydrogen Program Review, NREL/CP-610-32405, 2002. https://www.eecbg.energy.gov/hydrogenandfuelcells/pdfs/32405a16.pdf
25. Patent WO2019240586, 2018 https://patents.google.com/patent/WO2019240586A1/en
26. Богаутдинов А.З., Еременко Ю.И., Русанов В.Д. Ресурсные испытания плазмохимического блока Оренбургского опытного стенда по переработке H2S-содержащих газов // Вопросы атомной науки и техники. 1991. Вып. 2. С. 5-7.
27. G.Zhao, S.John, J.Zhang, et al. Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor. Chemical Engineering Science 62(8):2216-2227, https://doi.org/10.1016/j.ces.2006.12.052
28. Мирзаев С. С., Кодирова Н. Д., Нуруллаев М. М., Хужжиев М. Я. Изучение энергозатрат при плазмохимической диссоциации сероводорода // Молодой ученый. — 2013. — №2. — С. 49-52. https://moluch.ru/archive/49/6100/
29. X.Dang, J.Huang, L.Kang, T.Wu, Q.Zhang, Research on Decomposition of Hydrogen Sulfide Using Nonthermal Plasma with Metal Oxide Catalysis, Energy Procedia, V. 16, Part B, 2012, P. 856-862, https://doi.org/10.1016/j.egypro.2012.01.137.
30. L.Zhao, Y.Wang, X.Li, A.Wang, C.Song, Y.Hu, Hydrogen production via decomposition of hydrogen sulfide by synergy of non-thermal plasma and semiconductor catalysis, International Journal of Hydrogen Energy, V. 38, 34, 2013, P. 14415-14423, https://doi.org/10.1016/j.ijhydene.2013.09.008.
31. F. Vursel, L. Plak. M. Venugopalan (Ed.), Reactions Under Plasma Conditions, Vol. 2, Wiley Interscience, New York (1971), p. 299
32. W.M. Goldberger, J.H. Oxley. A.I.Ch.E.J., 9 (1963), p. 778. Quenching the plasma reaction by means of the fluidized bed. https://doi.org/10.1002/aic.690090614
33. J.F. Skrivan, W.V. Jaskowsky. Heat Transfer from Plasmas to Water-Cooled Tubes. Engineering Correlations. Ind. Eng. Chem. Proc. Des. Dev., 4 (1965), p. 371. https://doi.org/10.1021/i260016a007
34. В.А.Цоллер. Экспериментальное исследование диссоциации сероводородсодержащих газов в СВЧ-разряде повышенной мощности. Диссертация на соискание степени к.ф.-м.н., Москва , 1995. http://fizmathim.com/eksperimentalnoe-issledovanie-dissotsiatsii-serovodorodsoderzhaschih-gazov-v-svch-razryade-povyshennoy-moschnosti
35. W.Xu, M.Luo, R.Peng, M.Xiang, X.Hu, L.Lan, J.Zhou, Highly effective microwave catalytic direct decomposition of H2S into H2 and S over MeS-based (Me=Ni,Co) microwave catalysts, Energy Conversion and Management, V. 149, 2017, P. 219-227, https://doi.org/10.1016/j.enconman.2017.07.029
36. J.Chen, W.Xu, J.Zhu, X.Wang, J.Zhou, Highly effective microwave catalytic direct decomposition of H2S over carbon encapsulated Mo2C–Co2C/SiC composite, International Journal of Hydrogen Energy, V. 44, 47, 2019, P. 25680-25694, https://doi.org/10.1016/j.ijhydene.2019.08.054
37. M.Luo, J.Zhou, W.Xu, J.Chen, M.Xiang, K.Peng, Development of composite microwave catalysts (ABSx/CNTs, A = Co, B = Ni, Mo) for the highly effective direct decomposition of H2S into H2 and S, Fuel, V. 281, 2020, 118729, https://doi.org/10.1016/j.fuel.2020.118729
38. J. Chen, W.Xu, J.Zhu, X.Wang, J.Zhou, Highly effective direct decomposition of H2S by microwave catalysis on core-shell Mo2N-MoC@SiO2 microwave catalyst, Applied Catalysis B: Environmental, V. 268, 2020, 118454, https://doi.org/10.1016/j.apcatb.2019.118454
39. B.Zhang, Z.Song, Y.Pang, J.Zhang, X.Zhao, Y.Mao, J.Sun, W.Wang, High conversion of H2S to H2 and S via a robust microwave-induced discharge plasma, Journal of Cleaner Production, V.435, 2024, 140588, https://doi.org/10.1016/j.jclepro.2024.140588
40. J. Chen, J.Zhu, W.Xu, Y.Chen, J.Zhou, Highly efficient H2 and S production from H2S decomposition via microwave catalysis over a family of TiO2 modified MoxC microwave catalysts, Fuel Processing Technology, V.226, 2022, 107069, https://doi.org/10.1016/j.fuproc.2021.107069.
41. Y.S.Son, J.C.Kim, Decomposition of sulfur compounds by radiolysis: I. Influential factors, Chemical Engineering Journal, V. 262, 2015, P. 217-223, https://doi.org/10.1016/j.cej.2014.09.070.
42. Y.S.Son, I.H.Jung, S.J.Lee, P.Koutrakis, J.C.Kim, Decomposition of sulfur compounds by radiolysis: II. By-products and mechanisms, Chemical Engineering Journal, V. 269, 2015, P. 27-34, https://doi.org/10.1016/j.cej.2015.01.079.
43. A. Bishara, O.A. Salman, N. Khraishi, A. Marafi, Thermochemical decomposition of hydrogen sulfide by solar energy, International Journal of Hydrogen Energy, V. 12, 10, 1987, P. 679-685, https://doi.org/10.1016/0360-3199(87)90130-3.
44. Y. Oosawa, R. Takahashi, M. Yonemura, T. Sekine, Proposal of a new H2S decomposition process using solar energy, Solar Energy, V. 39, 5, 1987, P. 429-431, https://doi.org/10.1016/S0038-092X(87)80061-0.
45. W. Villasmil, A. Steinfeld, Hydrogen production by hydrogen sulfide splitting using concentrated solar energy – Thermodynamics and economic evaluation, Energy Conversion and Management, V. 51, 11, 2010, P. 2353-2361, https://doi.org/10.1016/j.enconman.2010.04.009.
46. C.Duan, C.Tang, Y.Du, S.Yu, H.Guo, Y.Bai, Y.Zhou, Direct solar-driven electrochemical dissociation of H2S to H2 with 12 % solar-to-hydrogen conversion efficiency in diaphragm electrolytic reactor, Applied Catalysis B: Environment and Energy, 355, 2024, 124146, https://doi.org/10.1016/j.apcatb.2024.124146.
47. Santosh S. Patil, Deepak R. Patil, Sanjay K. Apte, Milind V. Kulkarni, Jalindar D. Ambekar, Chan-Jin Park, Suresh W. Gosavi, Sanjay S. Kolekar, Bharat B. Kale, Confinement of Ag3PO4 nanoparticles supported by surface plasmon resonance of Ag in glass: Efficient nanoscale photocatalyst for solar H2 production from waste H2S, Applied Catalysis B: Environmental, V. 190, 2016, P. 75-84, https://doi.org/10.1016/j.apcatb.2016.02.068.
48. V. Preethi, S. Kanmani, Optimization of operating parameters for gas-phase photocatalytic splitting of H2S by novel vermiculate packed tubular reactor, Journal of Environmental Management, V. 181, 2016, P. 674-680, https://doi.org/10.1016/j.jenvman.2016.08.039.
49. M.Dan, Q.Zhang, S.Yu, A.Prakash, Y.Lin, Y.Zhou, Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S, Applied Catalysis B: Environmental, V. 217, 2017, P. 530-539, https://doi.org/10.1016/j.apcatb.2017.06.019.
50. M.Lou, R.Wang, H.Song, Advances and challenges toward efficient utilization of H2S for H2 production, Renewable and Sustainable Energy Reviews, 199, 2024, 114529, https://doi.org/10.1016/j.rser.2024.114529.
51. A.M. El-Melih, A. Al Shoaibi, A.K. Gupta, Hydrogen sulfide reformation in the presence of methane, Applied Energy, V. 178, 2016, P. 609-615, https://doi.org/10.1016/j.apenergy.2016.06.053.
52. A.M. El-Melih, L. Iovine, A. Al Shoaibi, A.K. Gupta, Production of hydrogen from hydrogen sulfide in presence of methane, International Journal of Hydrogen Energy, V. 42, 8, 2017, P. 4764-4773, https://doi.org/10.1016/j.ijhydene.2016.11.096.
53. F.Abdulrahman, Q.Wang, F.Angikath, S.M.Sarathy, Hydrogen sulfide methane reforming: A kinetic modeling and techno-economic analysis study, International Journal of Hydrogen Energy, 67, 2024, P. 750-759, https://doi.org/10.1016/j.ijhydene.2024.04.213.
54. M.Kheirinik, N.Rahmanian, 12 - CS2 production from methane reforming with H2S, Editor(s): Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar, Advances in Natural Gas: Formation, Processing, and Applications. V. 7: Natural Gas Products and Uses, Elsevier, 2024, P. 263-274, https://doi.org/10.1016/B978-0-443-19227-2.00014-9.
55. T. D. Gregory, D. L. Feke, J. C. Angus, C. B. Brosilow, U. Landau. Electrolysis of liquid hydrogen sulphide. Journal Of Applied Electrochemistry, 10 (1980), 405-408. https://link.springer.com/article/10.1007/BF00617216
56. H.Huang, Y.Yu and K.H.Chung, Recovery of Hydrogen and Sulfur by Indirect Electrolysis of Hydrogen Sulfide, Energy Fuels, 2009, 23 (9), pp 4420–4425, https://doi.org/10.1021/ef900424a
57. R.A.Adewale, A.S.Berrouk, S.Dara, A process simulation study of hydrogen and sulfur production from hydrogen sulfide using the Fe–Cl hybrid process, Journal of the Taiwan Institute of Chemical Engineers, V. 54, 2015, P. 20-27, https://doi.org/10.1016/j.jtice.2015.03.018.
58. S.V. Slavov, K.T. Chuang, A.R. Sanger, J.C. Donini, J. Kot, S. Petrovic, A proton-conducting solid state H2S—O2 fuel cell. 1. anode catalysts, and operation at atmospheric pressure and 20–90°C, International Journal of Hydrogen Energy, V. 23, 12, 1998, P. 1203-1212, https://doi.org/10.1016/S0360-3199(98)00003-2.
59. J.Mbah, B.Krakow, E.Stefanakos, J.Wolan. Electrolytic splitting of H2S using CsHSO4 membrane. Journal of The Electrochemical Society, 2008, 155, E166-E170. https://doi.org/10.1149/1.2976360
60. J.Mbah, S.Srinivasan, BKrakow, J.Wolan, Y.Goswami, E.Stefanakos, Narayana Appathurai, Effect of RuO2–CoS2 anode nanostructured on performance of H2S electrolytic splitting system, International Journal of Hydrogen Energy, V. 35, 19, 2010, P. 10094-10101, https://doi.org/10.1016/j.ijhydene.2010.08.023.
61. D.Ipsakis, T.Kraia, M.Konsolakis, G.Marnellos, Remediation of Black Sea ecosystem and pure H2 generation via H2S-H2O co-electrolysis in a proton-conducting membrane cell stack reactor: A feasibility study of the integrated and autonomous approach, Renewable Energy, V. 125, 2018, P. 806-818, https://doi.org/10.1016/j.renene.2018.03.005.
62. Reshetenko T.V. , Khajrulin S.R. , Ismagilov Z.R. , Kuznetsov V.V. Study of the Reaction of High-Temperature H2S Decomposition on Metal Oxides (γ-Al2O3, α-Fe2O3, V2O5). International Journal of Hydrogen Energy. 2002. V. 27. N 4. P. 387-394. https://doi.org/10.1016/S0360-3199(01)00143-4
63. N.O. Guldal, H.E. Figen, S.Z. Baykara, New catalysts for hydrogen production from H2S: Preliminary results, International Journal of Hydrogen Energy, V. 40, 24, 2015, P. 7452-7458, https://doi.org/10.1016/j.ijhydene.2015.02.107.
64. N.O. Guldal, H.E. Figen, S.Z. Baykara, Production of hydrogen from hydrogen sulfide with perovskite type catalysts: LaMO3, Chemical Engineering Journal, V. 313, 2017, P. 1354-1363, https://doi.org/10.1016/j.cej.2016.11.057.
65. Tz. Kraia, N. Kaklidis, M. Konsolakis, G.E. Marnellos, Hydrogen production by H2S decomposition over ceria supported transition metal (Co, Ni, Fe and Cu) catalysts, International Journal of Hydrogen Energy, V. 44, 20, 2019, P. 9753-9762, https://doi.org/10.1016/j.ijhydene.2018.12.070
66. G.Jiang, X.Zhang, F.Zhang, Z.Liu, Z.Wang, Z.Hao, C.Lin, Efficient recovery of hydrogen and sulfur resources over non-sulfide based LaFexAl12-xO19 hexaaluminate catalysts by H2S catalytic decomposition, Applied Catalysis B: Environmental, V. 263, 2020, 118354, https://doi.org/10.1016/j.apcatb.2019.118354
67. J.Xu, S.Tang, S.Zhong, L.Song, P.Wu, W.Jiang, K.Wu, Q.Hu, C.Liu, H.Yue, B.Liang, Y.Yang, Solution combustion synthesis of CoSx, MoSx, CoSx-MoSx and their catalytic activity in H2 production from H2S decomposition, International Journal of Hydrogen Energy, 48(24), 2023, P. 8807-8818, https://doi.org/10.1016/j.ijhydene.2022.11.066.
68. A. Al Blooshi, K. Al-Ali, A. Al Hajaj, G.Palmisano, Chemical kinetics of two-step thermochemical decomposition of hydrogen sulfide over nickel sulfide, International Journal of Hydrogen Energy, Vo.52, Part D, 2024, P. 433-446, https://doi.org/10.1016/j.ijhydene.2023.06.310
69. M.Y.Dogan, H.M.Tasdemir, H.Arbag, N.Yasyerli, S.Yasyerli, H2 production via H2S decomposition over activated carbon supported Fe- and W- catalysts, International Journal of Hydrogen Energy, 2024, https://doi.org/10.1016/j.ijhydene.2024.02.316.
70. Yu.Sh.Matros. Catalytic Processes Under Unsteady-State Conditions. Studies in Surface Science and Catalysis, v.43, Elsevier Science, 1988.
71. Yu.Sh. Matros, Performance of catalytic processes under unsteady conditions, Chemical Engineering Science, 45, 1990, pp.2097-2102, https://doi.org/10.1016/0009-2509(90)80082-P.
72. А.Н.Загоруйко. Нестационарные каталитические процессы и сорбционно-каталитические технологии. Успехи химии, т.76, №7, 2007, с.691-706. http://dx.doi.org/10.1070/RC2007v076n07ABEH003664
73. A. Zagoruiko, L. Bobrova, N. Vernikovskaya, S. Zazhigalov. Unsteady-state operation of reactors with fixed catalyst beds. Reviews in Chemical Engineering, 2021; 37(1), pp.193–225 https://doi.org/10.1515/revce-2019-0017
74. R.J. Gillis, K. Al-Ali, W.H. Green, Thermochemical production of hydrogen from hydrogen sulfide with iodine thermochemical cycles, International Journal of Hydrogen Energy, 2018, https://doi.org/10.1016/j.ijhydene.2018.04.217.
75. Y.Zhang, Z.Zhou, J.Wang, Z.Wang, J.Zhou, K.Cen, Thermal efficiency evaluation of the thermochemical H2S splitting cycle for the hydrogen and sulfur production, International Journal of Hydrogen Energy, V. 38, 2, 2013, P. 769-776, https://doi.org/10.1016/j.ijhydene.2012.10.065.
76. H.Wang, A. Le Person, X.Zhao, J.Li, P.Nuncio, L.Yang, A.Moniri, K.T.Chuang, A low-temperature hydrogen production process based on H2S splitting cycle for sustainable oil sands bitumen upgrading, Fuel Processing Technology, V. 108, 2013, P. 55-62, https://doi.org/10.1016/j.fuproc.2012.04.010.
77. A.Moniri, P.Mertins, H.Wang, Exergy analysis of hydrogen production from different sulfur-containing compounds based on H2S splitting cycle, International Journal of Hydrogen Energy, V. 37, 20, 2012, P. 15003-15010, https://doi.org/10.1016/j.ijhydene.2012.07.088.
78. D.Masayuki, F.Kenzo, Y.Harumi, K.Tetsuya. The Study of Thermochemical Hydrogen Preparation. VI. A Hydrogenevolving Step through the H2S–CO Cycle. Bulletin of the Chemical Society of Japan, 1978, Vol.51, No.1, p. 150-153. https://doi.org/10.1246/bcsj.51.150
79. Y. Kotera, The thermochemical hydrogen program at N.C.L.I., International Journal of Hydrogen Energy, V. 1, 2, 1976, P. 219-220, https://doi.org/10.1016/0360-3199(76)90073-2
80. J.G.Weiner, C.W.Leggett. Process for production of hydrogen and sulfur. US Patent No.2979384, filed 22.12.1958, published 11.04.1961.
81. T. Chivers, J.B. Hyne, C. Lau, The thermal decomposition of hydrogen sulfide over transition metal sulfides, International Journal of Hydrogen Energy, V. 5, 5, 1980, P. 499-506, https://doi.org/10.1016/0360-3199(80)90056-7.
82. H. Kiuchi, K. Funaki, Y. Nakai, T. Tanaka, Thermochemical decomposition cycle of H2S with nickel sulfide, International Journal of Hydrogen Energy, V. 9, 8, 1984, P. 701-705, https://doi.org/10.1016/0360-3199(84)90268-4.
83. L.M. Al-Shamma, S.A. Naman, Kinetic study for thermal production of hydrogen from H2S by heterogeneous catalysis of vanadium sulfide in a flow system, International Journal of Hydrogen Energy, V. 14, 3, 1989, P. 173-179, https://doi.org/10.1016/0360-3199(89)90051-7.
84. L.M. Al-Shamma, S.A. Naman, The production and separation of hydrogen and sulfur from thermal decomposition of hydrogen sulfide over vanadium oxide/sulfide catalysts, International Journal of Hydrogen Energy, V. 15, 1, 1990, P. 1-5, https://doi.org/10.1016/0360-3199(90)90123-G
85. T. Chivers, C. Lau, The thermal decomposition of hydrogen sulfide over alkali metal sulfides and polysulfides, International Journal of Hydrogen Energy, V. 10, 1, 1985, P. 21-25, https://doi.org/10.1016/0360-3199(85)90131-4.
86. Говоров Г.В., Говоров В.Г., Говорова Н.Н. Способ разложения газообразного сероводорода. Патент РФ № 2 088 516, заявка: 93015787/26, 25.03.1993, дата публикации заявки: 10.10.1995
87. K.V. Jangam, A.S. Joshi, Y.Y.Chen, S.Mahalingam, A.A. Sunny, L.S.Fan, Synergistic decomposition of H2S into H2 by Ni3S2 over ZrO2 support via a sulfur looping scheme with CO2 enabled carrier regeneration, Chemical Engineering Journal, 426, 2021, 131815, https://doi.org/10.1016/j.cej.2021.131815
88. Y.Duan, S.Yu, J.Ye, Z.Huang, Y.Zhou, Low temperature hydrogen production from H2S with metal tin by cyclic two-step method, Gas Science and Engineering, 125, 2024, 205315, https://doi.org/10.1016/j.jgsce.2024.205315.
89. Старцев А.Н. , Захаров И.И. , Ворошина О.В. , Пашигрева А.В. , Пармон В.Н. Низкотемпературное разложение сероводорода в условиях сочетания сопряженной хемосорбции и катализа. Доклады Академии наук. 2004. Т. 399. № 2. С. 217-220. https://doi.org/10.1023/B:DOPC.0000048075.33807.c4
90. Старцев А.Н. , Загоруйко А.Н. , Бальжинимаев Б.С. , Сидякин М.В. , Кузнецов П.А. , Ворошина О.В. , Захаров И.И. Способ получения водорода и элементарной серы из сероводорода. Патент РФ №2216506, приоритет 26 февр. 2002 г., Заявка 2002105050/12 с 26 февр. 2002 г.
91. Старцев А.Н. , Круглякова О.В. , Рузанкин С.Ф. , Булгаков Н.Н. , Чесалов Ю.А. , Кравцов Е.А. , Жейвот В.И. , Ларина Т.В. , Паукштис Е.А. Особенности низкотемпературного каталитического разложения сероводорода. Журнал физической химии. 2014. Т. 88. № 6. С. 943-956. https://doi.org/10.7868/S004445371406034X
92. Старцев А.Н. Низкотемпературное каталитическое разложение сероводорода с получением водорода и двухатомной газообразной серы. Кинетика и катализ. 2016. Т. 57. № 4. С. 516-528. https://doi.org/10.1134/S002315841604011X
93. O.Osasuyi, K.Al-Ali, M. Abu Zahra, G.Palmisano, D. Viet Quang, Material screening for two-step thermochemical splitting of H2S using metal sulfide. E3S Web of Conferences 83, 01003 (2019) https://doi.org/10.1051/e3sconf/20198301003
94. A.Zagoruiko, Low-temperature chemisorption-enhanced catalytic decomposition of hydrogen sulfide: Thermodynamic analysis and process concept. Catalysis Today, V. 329, 2019, P. 171-176, https://doi.org/10.1016/j.cattod.2018.11.008.
95. Zagoruiko A., Mikenin P. Decomposition of hydrogen sulfide into elements in the cyclic chemisorption-catalytic regime. Catalysis Today, 378, 2021, pp.176-188. https://doi.org/10.1016/j.cattod.2020.12.004
96. A.Zagoruiko, P.Mikenin, Modelling of the cyclic chemisorption-catalytic process for production of elemental sulfur and hydrogen from hydrogen sulfide, Chemical Engineering and Processing - Process Intensification, 181, 2022, 109169, https://doi.org/10.1016/j.cep.2022.109169.
97. Загоруйко А. , Микенин П. , Чудакова М. Процесс хемосорбционно-каталитического разложения сероводорода на водород и серу с суперадиабатической окислительной регенерацией хемосорбента. В сборнике XXV Международная конференция по химическим реакторам (ХимРеактор-25), 8-13 октября 2023 г., Тюмень, Россия –ИК СО РАН, 2023.– C.75-76. ISBN978-5-906376-53-4.
Рецензия
Для цитирования:
Загоруйко А.Н., Кондрашев Д.О., Попов М.В., Клейменов А.В. Нестационарные циклические технологии разложения сероводорода на водород и серу. Катализ в промышленности. 2025;25(1):34-49. https://doi.org/10.18412/1816-0387-2025-1-34-49
For citation:
Zagoruiko A.N., Kondrashev D.O., Popov M.V., Kleymenov A.V. Existing and Promising Technologies for Hydrogen Sulfide Decomposition into Hydrogen and Sulfur. Kataliz v promyshlennosti. 2025;25(1):34-49. (In Russ.) https://doi.org/10.18412/1816-0387-2025-1-34-49