The hybrid metal-zeolite catalysts for Fischer – Tropsch synthesis to obtain C5–C18 hydrocarbon fraction
Abstract
Hybrid metal-zeolite catalysts are prepared and modified with transition metals (Pd, Fe, Co, Ni) for the direct synthesis of hydrocarbons of С5–С18 of CO and H2. State of the active catalyst component (dispersion, surface area and the recovery of Co) was studied by temperature-programmed reduction and oxygen adsorption. The catalytic performance of the samples are identified. Tests were carried out in a continuous tubular reactor with a diameter of 1,3 cm at 2 MPa and a temperature from 210 to 250 °С on the catalyst fraction 0,1–0,2 mm, weigh of samples 2,5 cm3. The activity of the samples increases in the Co Fe < Ni. In order to optimize the composition of the catalyst system the catalyst characteristics with a variable nickel content of 2, 4, 6 and 8 wt.% were studied. The maximum yield of liquid hydrocarbons from CO and H2 (120 g/m3 synthesis gas) was obtained by using a catalyst containing 4 wt.% Ni. The Tests on the granules (1,5–3,5 mm) of the catalyst in the reactor with increased load (50 cm3) were held that is showed the possibility of its use in a pilot plant.
About the Authors
S. A. AlkhimovRussian Federation
D. A. Grigoriev
Russian Federation
M. N. Mikhailov
Russian Federation
References
1. Khodakov A.Y., Chu W., Fongarland P. Advances in the development of novel cobalt Fischer — Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels // Chem. Rev. 2007. V. 107. PP. 1692—1744.
2. Lögdberg S., Lualdi M., Järås S., Walmsley J.C., Blekkan E.A., Rytter E., Holmen A. On the selectivity of cobaltbased Fischer — Tropsch catalysts: Evidence for a common precursor for methane and long-chain hydrocarbons // J. Catal. 2010. V. 274. PP. 84—98.
3. Egiebor N.O., Cooper W.C., Wojciechowski B.W. Synthesisof motor fuels from HY-zeolite supported Fischer — Tropsch iron catalysts // Appl. Catal. 1989. V. 55. PP. 47—64.
4. Kumabe K., Sato T., Matsumoto K., Ishida Y., Hasegawa T. Fischer — Tropsch synthesis with Fe-based catalyst focusing on alternative aviation fuel // Fuel. 2010. V. 89. PP. 2088—2095.
5. Van Wechem V.M.H., Senden M.M.G. Conversion of natural gas to transportation fuels via the Shell Middle Distillate Synthesis Process (SMDS) // Stud. Surf. Sci. Catal. 1994. V. 81. PP. 43—71.
6. Bessell S. Investigation of bifunctional zeolite supported cobalt Fischer — Tropsch catalysts // Appl. Catal. A. 1995. V. 126. PP. 235—244.
7. Martínez A., Rollán J., Arribas M.A., Cerqueira H.S., Costa A.F., S.-Aguiar E.F. A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer — Tropsch catalysts // J. Catal. 2007. V. 249. PP. 162— 173.
8. Pour A.N., Shahri S.M.K., Zamani Y., Irani M., Tehrani S. Deactivation studies of bifunctional Fe-HZSM5 catalyst in Fischer — Tropsch process // J. Nat. Gas Chem. 2008. V. 17. PP. 242—248.
9. Armor J.N. Metal-exchanged zeolites as catalysts // Micropor. Mesopor. Mater. 1998. V. 22. PP. 451—456.
10. Sheu L.-L., Karpinski Z., Sachtler W.M.H. Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts // J. Phys. Chem. 1989. V. 93. PP. 4890—4894.
11. Agrawal P.K., Fitzharris W.D., Katzer J.R. Sulfur poisoning and carbon deactivation of alumina-supported Ni, Co, Fe, and Ru catalysts in CO hydrogenation // Stud. Surf. Sci. Catal. 1980. V. 6. PP. 179—200.
12. Sachtler J.W.A., Kool J.M., Ponec V. The role of carbon in methanation by cobalt and ruthenium // J. Catal. 1979. V. 56. PP. 284—286.
13. Сливинский Е.В., Клигер Г.А., Кузьмин А.Е., Абрамова А.В., Куликова Е.А. Стратегия рационального
14. использования природного газа и других углеродсодержащих соединений в производстве синтетического жидкого топлива и полупродуктов нефтехимии // Росс. хим. ж. (Ж. Росс. хим. об-ва им. Д.И. Менделеева). 2003. T. 47. C. 12—29.
15. Ge Q., Tomonobu T., Fujimoto K., Li X. Influence of Pd ion-exchange temperature on the catalytic performance of Cu-ZnO/Pd-β zeolite hybrid catalyst for CO hydrogenation to light hydrocarbons // Catal. Comm. 2008. V. 9. PP. 1775—1778.
16. Vakros J., Kordulis Ch., Lycourghiotis A. Cobalt oxide supported γ-alumina catalyst with very high active surface area prepared by equilibrium deposition filtration // Langmuir. 2002. V. 18. PP. 417—422.
17. Choi K.-H., Korai Y., Mochida I. Preparation and characterization of nano-sized CoMo/Al2O3 catalyst for hydrodesulfurization // Appl. Catal. A. 2004. V. 260. PP. 229—236.
18. Liotta L.F., Pantaleo G., Di Carlo G., Marci G. Deganello G. Structural and morphological investigation of a cobalt catalyst supported on alumina-baria: effects of redox treatments on the activity in the NO reduction by CO // Appl. Catal. B. 2004. V. 52. PP. 1—10.
19. Ataloglou T., Fountzoula C., Bourikas K., Vakros J., Lycourghiotis A., Kordulis C. Cobalt oxide/g-alumina catalysts prepared by equilibrium deposition filtration: The influence of the initial cobalt concentration on the structure of the oxide phase and the activity for complete benzene oxidation // Appl. Catal. A. 2005. V. 288. PP. 1—9.
20. Yan J.Y., Kung M.C., Sachtler W.M.H., Kung H.H. Co/ Al2O3 lean NOx reduction catalyst // J. Catal. 1997. V. 172. PP. 178—186.
21. Sirijaruphan A., Horvath A., Goodwin Jr.J.G., Oukaci R. Cobalt aluminate formation in alumina-supported cobalt catalysts: effects of cobalt reduction state and water vapor // Catal. Lett. 2003. V. 91. PP. 89—94.
22. Gonzalez-Cortes S.L., Xiao T.-C., Costa P.M.F.J., Fontal B., Green M.L.H. Urea—organic matrix method: an alternative approach to prepare Co-MoS2/γ-Al2O3 HDS catalyst // Appl. Catal. A. 2004. V. 270. PP. 209—222.
23. Tavasoli A., Nakhaeipour A., Sadaghiani K. Raising Co/Al2O3 catalyst lifetime in Fischer — Tropsch synthesis by using a novel dual bed reactor // Fuel Proc. Techn. 2007. V. 88. PP. 461—469.
24. Espinosa G., Dominguez J.M., Morales-Pacheco P., Tobon A., Aguilar M., Benitez J. Catalytic behavior of Co/(Nanoβ-Zeolite) bifunctional catalysts for Fischer — Tropsch reactions // Catal. Today. 2011. V. 166. PP. 47—52.
25. Park J.-Y., Lee Y.-J., Karandikar P.R., Jun K.-W., Ha K.-S., Park H.-G. Fischer — Tropsch catalysts deposited with sizecontrolled Co3O4 nanocrystals: Effect of Co particle size on catalytic activity and stability // Appl. Catal. A. 2012. V. 411—412. PP. 15—23.
26. Pena M.A., Pawelec B., Terreros P., Fierro J.L.G., Lezaun J., Gomez J.P., Jimenez J.M., Vic S. Partial oxidation of methane to syngas over Ni-loaded ultrastable HY zeolite catalysts // Stud. Surf. Sci. Catal. 1997. V. 107. PP. 441— 446.
27. Arnoldy P., Moulijn A. Temperature-programmed reduction of CoO/Al2O3 catalysts // J. Catal. 1985. V. 93. PP. 38—54.
28. Lamber R., Shulzekloff G. On the microstructure of the coprecipitated Ni—Al2O3 catalysts // J. Catal. 1994. V. 146. PP. 601—607.
29. Borowiecki T., Gac W., Denis A. Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons: III. Reduction of Ni-Mo/Al2O3 catalysts // Appl. Catal. A. 2004. V. 270. PP. 27—36.
30. Vogelaar B.M., van Langeveld A.D., Kooyman P.J., Lock C.M., Bonne R.L.C., Mouljin J.A. Stability of metal nanoparticles formed during reduction of alumina supported nickel and cobalt catalysts // Catal. Today. 2011. V. 163. PP. 20—26.
31. Chen B., Liu N., Liu X., Zhang R., Li Y., Li Y., Sun X. Study on the direct decomposition of nitrous oxide over Fe-beta zeolites: From experiment to theory // Catal. Today. 2011, V. 175. PP. 245—255.
32. Guzman-Vargas A., Delahay G., Coq B. Catalytic decomposition of N2O and catalytic reduction of N2O and N2O + + NO by NH3 in the presence of O2 over Fe-zeolite // Appl. Catal. B. 2003. V. 42. PP. 369—379.
33. Wang W.-J., Chen Y.-W. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts // Appl. Catal. 1991. V. 77. PP. 223—233.
34. Burakorn T., Panpranot J., Mekasuwandumrong O., Chaisuk Ch., Praserthdam P., Jongsomjit B. Characterization of cobalt dispersed on the mixed nanoscale alumina and zirconia supports // J. Mater. Proc. Technol. 2008. V. 206. PP. 352—358.
35. Ma W., Jacobs G., Keogh R.A., Bukur D.B., Davis B.H. Fischer — Tropsch synthesis: Effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25%Co/Al2O3 catalyst // Appl. Catal. A. 2012. V. 437—438. PP. 1—9.
36. Schanke D., Vada S., Blekkan E.A., Hilmen A.M., Hoff A., Holmen A. Study of Pt-promoted cobalt CO hydrogenation catalysts // J. Catal. 1995. V. 156. PP. 85—95.
37. Enache D.I., Rebours B., Roy-Auberger M., Revel R. In situ XRD study of the influence of thermal treatment on the characteristics and the catalytic properties of cobaltbased Fischer — Tropsch catalysts // J. Catal. 2002. V. 205 PP. 346—353..
38. Chen Y.W., Tang H.T., Goodwin J.G. Effect of preparation methods on the catalytic properties of zeolite-supported ruthenium in the Fischer — Tropsch synthesis // J. Catal. 1983. V. 83. PP. 415—427.
39. Nijs H.H., Jacobs P.A. New evidence for the mechanism of the fischer-tropsch synthesis of hydrocarbons // J. Catal. 1980. V. 66. PP. 401—411.
40. Lee W.H., Bartholomew C.H. Multiple reaction states in CO hydrogenation on alumina-supported cobalt catalysts // J. Catal. 1989. V. 120. PP. 256—271.
41. Koh A.C.W., Chen L., Leong W.K., Johson B.F.G., Khimyak T., Lin J. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel—cobalt catalysts // Int. J. Hydrogen Energy. 2007. V. 32. PP. 725—730.
42. Tsakoumis N.E., Ronning M., Borg O., Rytter E., Holmen A. Deactivation of cobalt based Fischer — Tropsch catalysts: A review // Catal. Today. 2010. V. 154. PP. 162—182.
43. Saib A.M., Moodley D.J.,. Ciobica I.M, Hauman M.M., Sigwebela B.H., Weststrate C.J., Niemantsverdriet J.W., van de Loosdrecht J. Fundamental understanding of deactivation and regeneration of cobalt Fischer — Tropsch synthesis catalysts // Catal. Today. 2010. V. 154. PP. 271—282.
44. Feller A., Guzman A., Zuazo I., Lercher J.A. On the mechanism of catalyzed isobutane/butene alkylation by zeolites // J. Catal. 2004. V. 224. PP. 80—93.
45. Cho K.M., Park S., Seo J.G., Youn M.H., Baeck S.-H., Jun K.-W., Chung J.S., Song I.K. Production of middle distillate in a dual-bed reactor from synthesis gas through wax cracking: Effect of acid property of Pd-loaded solid acid catalysts on the wax conversion and middle distillate selectivity // Appl. Catal. B. 2008. V. 83. PP. 195—201.
46. Collins J.P., Font Freide J.J.H.M., Nay B. A History of Fischer — Tropsch wax upgrading at BP — from catalyst screening studies to full scale demonstration in Alaska // J. Nat. Gas. Chem. 2006. V. 15. PP. 1—10.
47. Knochen J., Guttel R., Knobloch C., Turek T. Fischer — Tropsch synthesis in milli-structured fixed-bed reactors: Experimental study and scale-up considerations // Chem. Eng. Processing: Process Intensification. 2010. V. 49. PP. 958—964.
48. Sharma A., Philippe R., Luck F., Schweich D. A simple and realistic fixed bed model for investigating Fischer — Tropsch catalyst activity at lab-scale and extrapolating to industrial conditions // Chem. Eng. Sci. 2011. V. 66. PP. 6358—6366.
49. Overtoom R., Fabricius N., Leenhouts W. Shell GTL, from bench scale to world scale // Proc. of 1st Annual Gas Processing Symp. 2009. 378—387.
Review
For citations:
Alkhimov S.A., Grigoriev D.A., Mikhailov M.N. The hybrid metal-zeolite catalysts for Fischer – Tropsch synthesis to obtain C5–C18 hydrocarbon fraction. Kataliz v promyshlennosti. 2013;(4):31-41. (In Russ.)