Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Properties of carbon nanofibers modified with sodium hydroxide in the catalytic decomposition of formic acid

https://doi.org/10.18412/1816-0387-2025-2-33-39

Abstract

 Experiments were conducted on the decomposition of formic acid on carbon nanofibers (CNFs) to produce pure hydrogen. It has been shown that carbon nanofibers are capable of decomposing formic acid predominantly with the formation of hydrogen and carbon dioxide. Alkaline treatment of CNF leads to a sharp increase in catalytic activity in the decomposition of formic acid. Treatment of CNF with alkali slightly increases the selectivity of the decomposition reaction of formic acid with the formation of hydrogen and CO2. Using high-resolution transmission microscopy (HRTEM), it was found that alkaline treatment leads to modification of the CNF surface by sodium ions, which are uniformly distributed over the carbon surface. For comparison, the catalytic properties of CNF (NaOH) and 0.2% Pt/CNF catalysts in the decomposition of formic acid were studied. It was found that the activity of the 0.2%Pt/CNF catalyst is slightly higher than the activity and selectivity of the CNF (NaOH) catalyst.

About the Author

V. V. Chesnokov
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk
Russian Federation


References

1. Veziroglu T.N., Sahin S. //Energy Convers Manag, 2008.V.49. P.1820-1831. doi: 10.1016/j.enconman.2007.08.

2. Nguyen K.H., Kakinaka M. //Renew Energy 2019. V.132. P.1049-57. DOI: 10.1016/j.renene.2018.08.069

3. Bulut A., Yurderi M., Karatas Y., Zahmakiran M., Kivrak H., Gulcan M., Kaya M. // Appl Catal B. 2015. V.164. P.324–333. DOI: 10.1039/C6NJ03873E

4. Gil M.V., Fermoso J., Pevida C., Chen D., Rubiera F. //Appl Catal B. 2016. V.184. P.64–76. DOI: 10.1016/j.apcatb.2015.11.028

5. Bielinski E.A., Lagaditis P.O., Zhang Y., Mercado B.Q., Würtele C., Bernskoetter W.H., Schneider S. //J. Am. Chem. Soc. 2014. V.136. P.10234-10237. https://doi.org/10.1021/ja505241x

6. Shen J., Yang L., Hu K., Luo W., Cheng G. //Int J Hydrogen Energy 2015. V.40. P.1062-70. DOI: 10.1016/j.ijhydene.2017.12.079

7. Wang Y., Lu Y., Wang D., Wu S., Cao Z., Zhang K. et al. //Int J Hydrogen Energy 2016. V.41. P.16077-86. DOI:

8. 1016/j.ijhydene.2022.09.264

9. Nielsen M., Alberico E., Baumann W., Drexler H-J., Junge H., Gladiali S., et al. // Nature 2013. V.495. P.85. doi:10.1038/nature11891

10. Valera-Medina A., Xiao H., Owen-Jones M., David WIF., Bowen P.J. // 2018. V.69. P.63-102. doi:10.1038/nature11891

11. Abbas Al-Nayili, Hasan Sh. Majdi, Talib M. Albayati, Noori Saady // Catalysts 2022. V.12. №(3). P.324 DOI: 10.3390/catal12030324

12. Eppinger J., Huang K-W. //ACS Energy Lett 2017. V.2. P.188-95. doi:10.1021/acsenergylett.6b00574

13. Zhong H., Iguchi M., Chatterjee M., Himeda Y., Xu Q., Kawanami H. //Adv Sustain Syst 2018. V.2. P.1700161. doi:10.1002/adsu.201700161

14. Grasemann M., Laurenczy G. // Energy Environ. Sci. 2012. V. 5. P. 8171-8181. https://doi.org/10.1039/C2EE21928J

15. Bulushev D.A., Ross J.R.H. //ChemSusChem. 2018. V. 11. P. 821-836. https://doi.org/10.1002/cssc.201702075

16. Navlani-García M., Mori K., Salinas-Torres D., Kuwahara Y. and Yamashita H. //Front. Mater. 2019. V.6. P.1-18. https://doi.org/10.3389/fmats.2019.00044

17. Li S., Singh S., Dumesic J.A., Mavrikakis M. //Catal Sci Technol 2019. V.9. P.2836-2848. https://doi.org/10.1039/c9cy00410f

18. Bulushev D.A. , Sobolev V.I. , Pirutko L.V. , Starostina A.V. , Asanov I.P. , Modin E. , Chuvilin A.L. , Gupta N. , Okotrub A.V. , Bulusheva L.G. //Catalysts. 2019. V.9. N4. P.376, 1-13. https://doi.org/10.3390/catal9040376

19. Solakidou M., Deligiannakis Y., Louloudi M. // Int J Hydrogen Energy 2018. V.43. P.21386-21397. https://doi.org/10.1016/j.ijhydene.2018.09.198

20. Matsunami A., Kuwata S., Kayaki Y. //ACS Catal 2017. V.7, P.4479-4484. https://doi.org/10.1021/acscatal.7b01068

21. Tedsree K., Li T., Jones S., Chan C.W.A., Yu K.M.K., Bagot P.A.J., Marquis E.A., Smith G. D.W., Tsang S.Chi.E. //Nat Nanotechnol 2011.V.6. P.302-307. https://doi.org/10.1038/NNANO.2011.42

22. Zhang J., Wang H., Zhao Q., Di L., Zhang X. // Int J Hydrogen Energy 2020. V.45. P.9624-9634. https://doi.org/10.1016/j.ijhydene.2020.01.196

23. Yurderi M., Bulut A., Zahmakiran M., Kaya M. //Appl Catal, B 2014. V.160-161. P.514-24. http://dx.doi.org/10.1016/j.apcatb.2014.06.004

24. Sobolev V., Asanov I., Koltunov K. //Energies 2019. V.12. N21. 4198:1-8. https://doi.org/10.3390/en12214198

25. Tang C., Surkus A-E., Chen F., Pohl M-M., Agostini G., Schneider M., et al. //Angew Chem Int Ed 2017;56:16616-16620. https://doi.org/10.1002/anie.201710766

26. Fujitsuka H., Nakagawa K., Hanprerakriengkrai S., Nakagawa H., Tago T. //J Chem Eng Jpn 2019;52:423-429. https://doi.org/10.1252/jcej.18we251

27. Bing Q., Liu W., Yi W., Liu J-Y. // J Power Sources 2019. V.413. P.399-407. https://doi.org/10.1016/j.jpowsour.2018.12.063

28. Balaraman E., Nandakumar A., Jaiswal G., Sahoo M.K. //Catal Sci Technol

29. V.7. P.3177-95. https://doi.org/10.1039/c7cy00879a

30. Bide Y., Nabid M.R., Etemadi B. //Int J Hydrogen Energy 2016. V.41. P.20147-55. http://dx.doi.org/10.1016/j.ijhydene.2016.08.108

31. Kazakova M.A., Selyutin A.G., Ishchenko A.V., Lisitsyn A.S., Koltunov K.Yu., Sobolev V.I. //Int J Hydrogen Energy 2020. V.45. P.19420-30. https://doi.org/10.1016/j.ijhydene.2020.05.127

32. Chesnokov V.V. , Kriventsov V.V. , Prosvirin I.P. , Gerasimov E.Y.//2022. V.12. №9. P.1022:1-17. DOI: 10.3390/catal12091022

33. Chesnokov V.V., Lisitsyn A.S., Sobolev V.I., Gerasimov E.Y., Prosvirin I.P., Chesalov Y.A., Chichkan A.S., Podyacheva O.Y. Decomposition of Formic Acid on Pt/N-Graphene. Kinetics and Catalysis. 2021. V.62. №4. P.518-527. https://doi.org/10.1134/S0023158421040017

34. Чесноков В.В. //Кинетика и катализ. 2022. Т.63. №1. С.77-85. DOI: 10.31857/S0453881122010014

35. Chesnokov V.V. , Chichkan A.S.// Int J Hydrogen Energy. 2009. V.34. N7. P.2979-2985. https://doi.org/10.1016/j.ijhydene.2009.01.074

36. Мишаков И.В. , Буянов Р.А. , Чесноков В.В. , Стрельцов И.А. , Ведягин А.А. //Катализ в промышленности. 2008. №2. С. 26-31.

37. DOI: 10.31857/S0453881122010038


Review

For citations:


Chesnokov V.V. Properties of carbon nanofibers modified with sodium hydroxide in the catalytic decomposition of formic acid. Kataliz v promyshlennosti. 2025;25(2):33-39. (In Russ.) https://doi.org/10.18412/1816-0387-2025-2-33-39

Views: 126


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)