

Properties of carbon nanofibers modified with sodium hydroxide in the catalytic decomposition of formic acid
https://doi.org/10.18412/1816-0387-2025-2-33-39
Abstract
Experiments were conducted on the decomposition of formic acid on carbon nanofibers (CNFs) to produce pure hydrogen. It has been shown that carbon nanofibers are capable of decomposing formic acid predominantly with the formation of hydrogen and carbon dioxide. Alkaline treatment of CNF leads to a sharp increase in catalytic activity in the decomposition of formic acid. Treatment of CNF with alkali slightly increases the selectivity of the decomposition reaction of formic acid with the formation of hydrogen and CO2. Using high-resolution transmission microscopy (HRTEM), it was found that alkaline treatment leads to modification of the CNF surface by sodium ions, which are uniformly distributed over the carbon surface. For comparison, the catalytic properties of CNF (NaOH) and 0.2% Pt/CNF catalysts in the decomposition of formic acid were studied. It was found that the activity of the 0.2%Pt/CNF catalyst is slightly higher than the activity and selectivity of the CNF (NaOH) catalyst.
About the Author
V. V. ChesnokovRussian Federation
References
1. Veziroglu T.N., Sahin S. //Energy Convers Manag, 2008.V.49. P.1820-1831. doi: 10.1016/j.enconman.2007.08.
2. Nguyen K.H., Kakinaka M. //Renew Energy 2019. V.132. P.1049-57. DOI: 10.1016/j.renene.2018.08.069
3. Bulut A., Yurderi M., Karatas Y., Zahmakiran M., Kivrak H., Gulcan M., Kaya M. // Appl Catal B. 2015. V.164. P.324–333. DOI: 10.1039/C6NJ03873E
4. Gil M.V., Fermoso J., Pevida C., Chen D., Rubiera F. //Appl Catal B. 2016. V.184. P.64–76. DOI: 10.1016/j.apcatb.2015.11.028
5. Bielinski E.A., Lagaditis P.O., Zhang Y., Mercado B.Q., Würtele C., Bernskoetter W.H., Schneider S. //J. Am. Chem. Soc. 2014. V.136. P.10234-10237. https://doi.org/10.1021/ja505241x
6. Shen J., Yang L., Hu K., Luo W., Cheng G. //Int J Hydrogen Energy 2015. V.40. P.1062-70. DOI: 10.1016/j.ijhydene.2017.12.079
7. Wang Y., Lu Y., Wang D., Wu S., Cao Z., Zhang K. et al. //Int J Hydrogen Energy 2016. V.41. P.16077-86. DOI:
8. 1016/j.ijhydene.2022.09.264
9. Nielsen M., Alberico E., Baumann W., Drexler H-J., Junge H., Gladiali S., et al. // Nature 2013. V.495. P.85. doi:10.1038/nature11891
10. Valera-Medina A., Xiao H., Owen-Jones M., David WIF., Bowen P.J. // 2018. V.69. P.63-102. doi:10.1038/nature11891
11. Abbas Al-Nayili, Hasan Sh. Majdi, Talib M. Albayati, Noori Saady // Catalysts 2022. V.12. №(3). P.324 DOI: 10.3390/catal12030324
12. Eppinger J., Huang K-W. //ACS Energy Lett 2017. V.2. P.188-95. doi:10.1021/acsenergylett.6b00574
13. Zhong H., Iguchi M., Chatterjee M., Himeda Y., Xu Q., Kawanami H. //Adv Sustain Syst 2018. V.2. P.1700161. doi:10.1002/adsu.201700161
14. Grasemann M., Laurenczy G. // Energy Environ. Sci. 2012. V. 5. P. 8171-8181. https://doi.org/10.1039/C2EE21928J
15. Bulushev D.A., Ross J.R.H. //ChemSusChem. 2018. V. 11. P. 821-836. https://doi.org/10.1002/cssc.201702075
16. Navlani-García M., Mori K., Salinas-Torres D., Kuwahara Y. and Yamashita H. //Front. Mater. 2019. V.6. P.1-18. https://doi.org/10.3389/fmats.2019.00044
17. Li S., Singh S., Dumesic J.A., Mavrikakis M. //Catal Sci Technol 2019. V.9. P.2836-2848. https://doi.org/10.1039/c9cy00410f
18. Bulushev D.A. , Sobolev V.I. , Pirutko L.V. , Starostina A.V. , Asanov I.P. , Modin E. , Chuvilin A.L. , Gupta N. , Okotrub A.V. , Bulusheva L.G. //Catalysts. 2019. V.9. N4. P.376, 1-13. https://doi.org/10.3390/catal9040376
19. Solakidou M., Deligiannakis Y., Louloudi M. // Int J Hydrogen Energy 2018. V.43. P.21386-21397. https://doi.org/10.1016/j.ijhydene.2018.09.198
20. Matsunami A., Kuwata S., Kayaki Y. //ACS Catal 2017. V.7, P.4479-4484. https://doi.org/10.1021/acscatal.7b01068
21. Tedsree K., Li T., Jones S., Chan C.W.A., Yu K.M.K., Bagot P.A.J., Marquis E.A., Smith G. D.W., Tsang S.Chi.E. //Nat Nanotechnol 2011.V.6. P.302-307. https://doi.org/10.1038/NNANO.2011.42
22. Zhang J., Wang H., Zhao Q., Di L., Zhang X. // Int J Hydrogen Energy 2020. V.45. P.9624-9634. https://doi.org/10.1016/j.ijhydene.2020.01.196
23. Yurderi M., Bulut A., Zahmakiran M., Kaya M. //Appl Catal, B 2014. V.160-161. P.514-24. http://dx.doi.org/10.1016/j.apcatb.2014.06.004
24. Sobolev V., Asanov I., Koltunov K. //Energies 2019. V.12. N21. 4198:1-8. https://doi.org/10.3390/en12214198
25. Tang C., Surkus A-E., Chen F., Pohl M-M., Agostini G., Schneider M., et al. //Angew Chem Int Ed 2017;56:16616-16620. https://doi.org/10.1002/anie.201710766
26. Fujitsuka H., Nakagawa K., Hanprerakriengkrai S., Nakagawa H., Tago T. //J Chem Eng Jpn 2019;52:423-429. https://doi.org/10.1252/jcej.18we251
27. Bing Q., Liu W., Yi W., Liu J-Y. // J Power Sources 2019. V.413. P.399-407. https://doi.org/10.1016/j.jpowsour.2018.12.063
28. Balaraman E., Nandakumar A., Jaiswal G., Sahoo M.K. //Catal Sci Technol
29. V.7. P.3177-95. https://doi.org/10.1039/c7cy00879a
30. Bide Y., Nabid M.R., Etemadi B. //Int J Hydrogen Energy 2016. V.41. P.20147-55. http://dx.doi.org/10.1016/j.ijhydene.2016.08.108
31. Kazakova M.A., Selyutin A.G., Ishchenko A.V., Lisitsyn A.S., Koltunov K.Yu., Sobolev V.I. //Int J Hydrogen Energy 2020. V.45. P.19420-30. https://doi.org/10.1016/j.ijhydene.2020.05.127
32. Chesnokov V.V. , Kriventsov V.V. , Prosvirin I.P. , Gerasimov E.Y.//2022. V.12. №9. P.1022:1-17. DOI: 10.3390/catal12091022
33. Chesnokov V.V., Lisitsyn A.S., Sobolev V.I., Gerasimov E.Y., Prosvirin I.P., Chesalov Y.A., Chichkan A.S., Podyacheva O.Y. Decomposition of Formic Acid on Pt/N-Graphene. Kinetics and Catalysis. 2021. V.62. №4. P.518-527. https://doi.org/10.1134/S0023158421040017
34. Чесноков В.В. //Кинетика и катализ. 2022. Т.63. №1. С.77-85. DOI: 10.31857/S0453881122010014
35. Chesnokov V.V. , Chichkan A.S.// Int J Hydrogen Energy. 2009. V.34. N7. P.2979-2985. https://doi.org/10.1016/j.ijhydene.2009.01.074
36. Мишаков И.В. , Буянов Р.А. , Чесноков В.В. , Стрельцов И.А. , Ведягин А.А. //Катализ в промышленности. 2008. №2. С. 26-31.
37. DOI: 10.31857/S0453881122010038
Review
For citations:
Chesnokov V.V. Properties of carbon nanofibers modified with sodium hydroxide in the catalytic decomposition of formic acid. Kataliz v promyshlennosti. 2025;25(2):33-39. (In Russ.) https://doi.org/10.18412/1816-0387-2025-2-33-39