

Catalytic etching of industrial Pt−Pd−Rh−Ru gauzes during high-temperature oxidation of ammonia with air
https://doi.org/10.18412/1816-0387-2025-2-40-57
Abstract
High-temperature oxidation of NH3 to NO on platinum alloy gauzes is employed for industrial production of HNO3. The annual world output of HNO3 reaches 70−80 million tons. About 80% of the produced acid is used to obtain agricultural mineral fertilizers. The oxidation of NH3 on platinum alloy gauzes is accompanied by the formation of etching layers, which deteriorate the strength and activity of the gauzes and increase the catalyst losses. Such etching layers are being studied intensely to find ways for enhancing the efficiency of catalysts applied in the industrial oxidation of NH3. This study deals with the morphology, microstructure and chemical composition of the etching structures on the industrial Pt−Pd−Rh−Ru gauzes with the composition 81, 15, 3.5, 0.5 wt.%, which were used in the oxidation of NH3 with air at T = 1133 К and pressure 3.6 bar in industrial and laboratory reactors. The etching layer detected on such gauzes included “cauliflower”-type porous crystal agglomerates with the size of 10−50 µm, various crystal fragments and the wire surface with a high concentration of defects. The etching layers have an increased specific surface area, stable crystal structure and phase composition, elevated concentration of absorbed Oab and Nab atoms (20−25 at.%) in subsurface layers of the catalyst, and nonuniform distribution of temperature regions. The highly exothermic NH3 oxidation reaction results in the emergence of “hotspot”-type etching sites, which form temperature gradients both on the surface and in the layer of agglomerates. The formation of such gradients can lead to the mass transfer of metals from “hot” to “cold” regions of the catalyst during the surface diffusion of metal atoms as well as upon evaporation and condensation of PtO2-type volatile oxides leading to deep surface etching with the formation of a rough layer of “cauliflowers”.
About the Authors
A. N. SalanovRussian Federation
A. N. Serkova
Russian Federation
A. V. Kalinkin
Russian Federation
M. Yu. Smirnov
Russian Federation
L. A. Isupova
Russian Federation
V. N. Parmon
Russian Federation
References
1. International Platinum Group Metals Association (IPA), About PGMs, PGMs uses. http://ipa-news.de. Accessed 07 May 2024
2. Johnson Matthey, Products and Markets, PGM Markets. http://matthey.com. Accessed 07 May 2024
3. Lloyd L. Oxidation Catalysts. In: Twigg M.V., Spencer M.S. (eds) Handbook of Industrial Catalysis, Fundamental and Applied Catalysis. Springer Science+Business Media, New York. 2011. P. 119−131.
4. Hatscher S.T., Fetzer T., Wagner E., Kneuper H. Ammonia Oxidation. In: Ertl G., Knozinger H., Schuth F., Weitkamp J. (eds). Handbook of Heterogeneous Catalysis 2nd ed. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2008. P. 2575−2592.
5. Караваев М.М., Засорин А.П., Клещев Н.Ф. Каталитическое окисление аммиака. М.: Химия, 1983. 232 с.
6. Fierro J.L.G., Palacios J.M., Tomas F. // Platinum Metals Review. 1990. V. 34. № 2. P. 62−70.
7. Rosenstiel A.P.v., Bruis W.H.J., van Os G.H., Mertens P.R., Koeiman O.A., Berresheim K.H. // Fresenius Z. Analytische Chemie. 1989. V. 333. P. 535−539.
8. Fierro J.L.G., Palacios J.M., Tomas F. // Journal of Materials Science. 1992. V. 27. P. 685−691.
9. Harbord N.H. // Platinum Metals Review. 1974. V. 18. № 3. P. 97−102.
10. Sperner F., Hohmann W. // Platinum Metals Review. 1976. V. 20. № 1. P. 12−20.
11. Philpott J.E. // Platinum Metals Review. 1971. V. 15. № 2. P. 52−57.
12. Lyubovsky M.R., Barelko V.V. // Journal of Catalysis. 1994. V. 149. P. 23−35.
13. Любовский М.Р., Барелко В.В. // Кинетика и катализ. 1994. Т. 35. № 3. С. 412−418.
14. Hannevold L., Nilsen O., Kjekshus A., Fjellvag H. // Applied Catalysis A: General. 2005. V. 284. P. 163−176. https://doi.org/10.1016/j.apcata.2005.01.033
15. Nilsen O., Kjekshus A., Fjellvag H. // Applied Catalysis A: General. 2001. V. 207. P. 43−54. https://doi.org/10.1016/S0926-860X(00)00615-3
16. Hannevold L., Nilsen O., Kjekshus A., Fjellvag H. // Applied Catalysis A: General. 2005. V. 284. P. 185−192. https://doi.org/10.1016/j.apcata.2005.01.032
17. Саланов А. Н., Супрун Е. А., Серкова А. Н., Сидельникова О. Н., Сутормина Е. Ф., Исупова Л. А., Калинкин А. В., Пармон В. Н. // Кинетика и катализ. 2018. Т. 59. № 1 С. 105−121. 10.7868/S0453881118010112
18. Salanov A.N., Suprun E.A., Serkova A.N., Sidelnikova O.N., Sutormina E.F., Isupova L.A., Kalinkin A.V., Parmon V.N. // Kinetics and Catalysis. 2018. V. 59. P. 83–98. 10.1134/s0023158418010093
19. Саланов А. Н., Супрун Е. А., Серкова А. Н., Кочурова Н.М., Сидельникова О. Н., Сутормина Е. Ф., Исупова Л. А., Калинкин А. В., Пармон В. Н. // Кинетика и катализ. 2018. Т. 59. № 6. С. 756−775. 10.1134/S0453881118060175
20. Salanov A.N., Suprun E.A., Serkova A.N., Kochurova N.M., Sidel’nikova O.N., Sutormina E.F., Isupova L.A., Kalinkin A.V., Parmon V.N. // Kinetics and Catalysis. 2018. V. 59. P. 792–809. https://doi.org/10.1134/S0023158418060137
21. Саланов А. Н., Супрун Е. А., Серкова А. Н., Чеснокова Н.М., Сутормина Е. Ф., Исупова Л. А., Пармон В. Н. // Кинетика и катализ. 2020. Т. 61. № 3. С. 385–409. 10.31857/S0453881120030211
22. Salanov A.N., Suprun E.A., Serkova A.N., Chesnokova N.M., Sutormina E.F., Isupova L.A., Parmon V.N. // Kinetics and Catalysis. 2020. V. 61. P. 421–443. https://doi.org/10.1134/S0023158420030179
23. Salanov A.N., Serkova A.N., Chesnokova N.M., Isupova L.A., Parmon V.N. // Materials Chemistry and Physics. 2021. V. 273. P. 125138−125151. https://doi.org/10.1016/j.matchemphys.2021.125138
24. Salanov A.N., Serkova A.N., Kalinkin A.V., Isupova L.A., Parmon V.N. // Catalysts. 2022. V. 12. P. 930−958. https://doi.org/10.3390/catal12090930
25. Salanov A.N., Kochurova N.M., Serkova A.N., Kalinkin A.V., Isupova L.A., Parmon V.N. // Applied Surface Science. 2019. V. 490. P. 188−203. https://doi.org/10.1016/j.apsusc.2019.05.289
26. Salanov A.N., Serkova A.N., Isupova L.A., Tsybulya S.V., Parmon V.N. // Catalysts. V. 13. № 2. P. 249−276. https://doi.org/10.3390/catal13020249
27. Васина С.Я., Бруштейн Е.А., Петрий О.А., Лазаричева И.В., Перов В.М. // Химическая промышленность. 1992. № 10. С. 30−33.
28. Goldstein J.I., Newbury D.E., Michael J.R., Ritchie N.W.M., Scott J.H.J., Joy D.C. Scanning Electron Microscopy and X-Ray Microanalysis, 5th ed. ; Springer Science+Business Media LLC: New York, USA. 2018. P. 1−63.
29. Feldman L.C., Mayer J.W. Fundamentals of Surface and thin Film Analysis, North-Holland, New York. 1986. P. 344.
30. Пармон В.Н. Термодинамика функционирующего катализатора. Долгопрудный, Издательский Дом «Интеллект», 2024. 504 с.
Review
For citations:
Salanov A.N., Serkova A.N., Kalinkin A.V., Smirnov M.Yu., Isupova L.A., Parmon V.N. Catalytic etching of industrial Pt−Pd−Rh−Ru gauzes during high-temperature oxidation of ammonia with air. Kataliz v promyshlennosti. 2025;25(2):40-57. (In Russ.) https://doi.org/10.18412/1816-0387-2025-2-40-57