

CH4 conversion to С2-С3 hydrocarbons over Pt/MgAlOх catalysts in a cyclic mode
https://doi.org/10.18412/1816-0387-2025-2-68-78
Abstract
A dynamics of the reaction of non-oxidative methane coupling at 6000C catalyzed by 1%Pt/MgAlOх and 1%Pt/g-Al2O3 with close size of platinum clusters has been studied. In contrast to reference 1%Pt/g-Al2O3 sample, carbonaceous strongly adsorbed compounds accumulated during reaction running can be burnt out completely in 1%Pt/MgAlOх catalysts at the same temperature, which restored their catalytic activity. A possibility to increase the duration of their operation with maximal C2-C3 products yield under cyclic mode and minimal CO and CO2 formation during regeneration has been shown.
About the Authors
L. G. PinaevaRussian Federation
O. B. Belskaya
Russian Federation
I. P. Prosvirin
Russian Federation
V. A. Likholobov
Russian Federation
A. S. Noskov
Russian Federation
References
1. Belgued M., Amariglio A., Lefort L., Pareja P., Amariglio H. // J. Catal. 1996. V. 161. P. 282–291. DOI: 10.1006/jcat.1996.0186.
2. Guczi L., Sarma K.V., Borkó L. // J. Catal. 1997. V. 167. P. 495–502. DOI: 10.1006/jcat.1997.1605.
3. Bazin D., Borkó L., Koppány Z., Kovács I., Stefler G., Sajó L.I., Schay Z., Guczi L. // Catal. Lett. 2002. V. 84, P. 169-182. DOI: 10.1023/A:1021423802679.
4. Belgued M., Amariglio A., Pareja P., Amariglio H. // J. Catal. 1996. V. 159. P. 441–457. DOI: 10.1006/JCAT.1996.0108.
5. Moya S.F., Martins R.L., Ota A., Kunkes E.L., Behrens M., Schmal M. // Appl. Catal. A 2012. V. 411‒412, 105-113. https://doi.org/10.1016/j.apcata.2011.10.025.
6. Moya S.F., Martins R.L., Schmal M. // Appl. Catal. A 2011. V. 396. V. 159-169. DOI: 10.1016/j.apcata.2011.02.007.
7. Chen Y.. Wang X, Luo X., Lin X., Zhang Y. // Chin. J. Chem. 2018. V. 36. P. 531-537. DOI: 10.1002/cjoc.201700800.
8. Borkó L., Guczi L. // Top Catal. 2006. V. 39. P. 35-43. DOI: 10.1007/s11244-006-0035-4.
9. Szeto K.C., Norsic S., Hardou L., Le Roux E., Chakka S., Thivolle-Cazat J., Baudouin, A., Papaioannou C., Basset J.M., Taoufik M. // Chem. Commun. 2010. V. 46. P. 3985-3987. DOI: 10.1039/C0CC00007H.
10. Chen Y., Wang X., Luo X., Lin X., Zhang Y. // Chin. J. Chem. 2018. V. 36. V. 531-537. DOI: 10.1002/cjoc.201700800.
11. Zavyalova U., Holena M., Schlogl R., Baerns M. // Chem. Cat. Chem. 2011. V. 3. P. 1935 – 1947. DOI: 10.1002/cctc.201100186.
12. Liu J., Yue J., Lv M., Wang F., Cui Y., Zhang Z., Xu G. // Carbon Resour. Convers. 2022. V.5. P. 1–14
13. Xiao Y., Varma A. // ACS Catal. 2018. V. 8. P. 2735−2740. DOI: 10.1021/acscatal.8b00156
14. Guo X., Fang G., Li G., Ma H., Fan H., Yu L., Ma C., Wu X., Deng D., Wei M., Tan D., Si R., Zhang S., Li J., Sun L., Tang Z., Pan X., Bao X. // Science. 2014. V. 344. P. 616-619. DOI: 10.1126/science.1253150.
15. Sim E., Lee S.W., Lee J.J., Han S.J., Shin J.H., Lee G., Ko S., Lee K.-Y., Kim Y.T. // J. Energy Chem. 2023. V. 81. P. 519–532. DOI: 10.1016/j.jechem.2023.03.019.
16. Han S.J., Lee S.W., Kim H.W., Kim S.K., Kim Y.T. // ACS Catal. 2019. V. 9. P. 7984−7997. DOI: 10.1021/acscatal.9b01643.
17. Chen Y., Wang X., Luo X., Lin X., Zhang Y. // Chin. J. Chem. 2018. V. 36. P. 531-537. DOI: 10.1002/cjoc.201700800.
18. Nishikawa Y., Ogihara H., Yamanaka I. // Chemistry Select. 2017 V. 2. P. 4572 – 4576. DOI: 10.1002/slct.201700734.
19. Ni P., Cao L., Zhu T., Zhao G., Liu Y., Lu Y. // Fuel 2022. V. 316. Art. 123333. DOI: 10.1016/j.fuel.2022.123333.
20. Tajima H., Ogihara H., Yoshida-Hirahara M., Kurokawa H. // New J. Chem. 2020. V. 44. P. 17198-17202. DOI: 10.1039/d0nj03808c.
21. Tshabalala T.E., Coville N.J. Scurrell M.S. // Appl. Catal. A 2014. V. 485. P. 238−244. DOI: 10.1016/j.apcata.2014.07.022.
22. Gerceker D., Motagamwala A.H., Rivera-Dones K.R., Miller J.B., Huber G.W., Mavrikakis M., Dumesic J.A. // ACS Catal. 2017. V. 7. P. 2088−2100. DOI: 10.1021/acscatal.6b02724.
23. Nishimura N., Tojo M. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 822-826. DOI: 10.1039/d0cp05401a.
24. Tomono T., Takamura R., Yoshida-Hirahara M., Yamamoto T., Matsumura S., Kurokawa H., Ogihara H. // Catal. Sci. Technol. 2023. V. 13. P. 4656-4664. DOI: https://doi.org/10.1039/D3CY00612C.
25. Guczi L., Sarma K.V., Borko L. // Catal. Letters 1996. V. 39. P. 43-47. DOI: 10.1007/BF00813728.
26. Kurosaka T., Matsuhashi H., Arata K. // J. Catal. 1998. V. 179. P. 28–35. DOI: 10.1006/jcat.1998.2209.
27. Marceau E., Tatibouet J.-M., Che M., Saint-Just J. // J. Catal. 1999. V 183. P. 384–395. DOI: 10.1006/jcat.1999.2400
28. Emdadia L., Mahoney L., Lee I.C., Leff A.C., Wu W., Liu D., Nguyen C.K., Tran D.T. // Appl. Catal. A 2020. V. 595. Art. 117510. DOI: 10.1016/j.apcata.2020.117510.
29. Feng R., Fang Z., Zhou P., Li T., Hu X., Yan X., Zhang Z. // J.Fuel Chem. Technol. 2024. V. 52(2). P. 218–233. DOI: 10.1016/S1872-5813(23)60383-4.
30. Lai Y., He S., Li X., Sun C., Seshan K. // Appl. Catal. A 2014. V. 469. P. 74– 80. DOI: 10.1016/j.apcata.2013.09.042.
31. Armendáriz H., Guzmán A., Toledo J.A., Llanos M.E., Vázquez A., Aguilar-Rıos G. //Appl. Catal. A 2001. V. 211. P. 69–80. DOI: 10.1016/S0926-860X(00)00836-X.
32. Koo K.Y., Roh H-S., Seo Y.T., Seo D.J., Yoon W.L., Park S.B. // Appl. Catal. A 2008. V. 340. P. 183–190. DOI: 10.1016/j.apcata.2008.02.009.
33. Belʹskaya O.B., Gulyaeva T.I., Leontʹeva N.N., Zaikovskii V.I., Larina T.V., Kireeva T.V., Doronin V.P., Likholobov V.A. // Kinet. Catal. 2011. V. 52. № 6. P. 876–885.
34. Bel’skaya, O.B., Leont’eva, N.N, Gulyaeva, T.I., Doronin, V.P., Zaikovskii, V.I., Likholobov, V.A. // Kinet. Catal. 2011. V. 52, № 5, P. 761-768.
35. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-Ray Photoelectron Spectroscopy. Perkin—Elmer Corp., Eden Prairie (MN), 1992. 261 p.
36. Scofield, J. H. // J. Electron Spectrosc. Relat. Phenom. 1976. V. 8. P.129–137. DOI: 10.1016/0368-2048(76)80015-1.
37. Belskaya O.B., Leont´eva N.N., Gulyaeva T.I., Cherepanova S.V., Talzi V.P., Drozdov V. A., Likholobov V.A. // Russ.Chem.Bull., Int.Ed. 2013. V. 62. №. 11, P. 2349—2361.
38. Cherepanova S.V., Leont’eva N.N., Arbuzov A.B., Drozdov V.A., Belskaya O.B., Antonicheva N.V. // J. Solid State Chem. 2015. V. 225. P. 417–426. DOI: 10.1016/j.jssc.2015.01.022.
39. Mironenko R.M., Belskaya O.B., Talsi V.P., Gulyaeva T.I., Kazakov M.O., Nizovskii A.I., Kalinkin A.V., Bukhtiyarov V.I., Lavrenov A.V., Likholobov V.A. // Appl. Catal. A 2014. V.469. P.472-482. DOI: 10.1016/j.apcata.2013.10.027.
40. Li L., Cheruvathur A., Zuo S., An P., Hou F., Xu J., Li G., Liu G. // Appl. Catal. B 2021. V. 299. Art. 120670. DOI: 10.1016/j.apcatb.2021.120670.
41. Zhao Y., Wang L., Kochubei A., Yang W., Xu H., Luo Y., Baiker A., Huang J., Wang Z., Jiang Y. // J. Phys. Chem. Lett. 2021. V. 12. P. 2536−2546. DOI: 10.1021/acs.jpclett.1c00139.
42. Kuo C-T., Lu Y., Kovarik L., Engelhard M., Karim A.M. // ACS Catalysis 2019. V. 9. P. 11030-11041. DOI: 10.1021/acscatal.9b02840.
43. Belskaya O.B., Duplyakin V.K., Likholobov V.A. // Kinetics Catal. 2019. V. 60. №. 6. P. 761–775. DOI: 10.1134/S0023158419060016.
Review
For citations:
Pinaeva L.G., Belskaya O.B., Prosvirin I.P., Likholobov V.A., Noskov A.S. CH4 conversion to С2-С3 hydrocarbons over Pt/MgAlOх catalysts in a cyclic mode. Kataliz v promyshlennosti. 2025;25(2):68-78. (In Russ.) https://doi.org/10.18412/1816-0387-2025-2-68-78