Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Methanol Steam Reforming to Hydrogen-Containing Gas over Supported Platinum-Containing Catalysts

https://doi.org/10.18412/1816-0387-2025-2-79-86

Abstract

The catalytic properties of supported Pt-containing granular (Pt/Ce0.75Zr0.25O2) and structured (Pt/Ce0.75Zr0.25O2-δ/η-Al2O3/FeCrAl) catalysts for methanol steam reformong to syngas were studied and compared. Comparative studies prove that the active Pt/Ce0.75Zr0.25O2 system in the structured catalyst operates more efficiently than in the granular catalyst. In particular, the structured catalyst 0.15 wt. % Pt/8 wt. % Ce0.75Zr0.25O2-δ/6 wt. % η-Al2O3/FeCrAl at atmospheric pressure, temperature 400 °C, and the reaction mixture (30 vol. % CH3OH, 35 vol. % H2O, 35 vol. % N2) feed rate of 60 L/(gcat·h), provided complete conversion of methanol to syngas with a total H2 and CO content of ~60 vol. % and syngas productivity of ~85 L(H2+CO)/(gcat·h).

About the Authors

A. D. Kuznetsova
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk; Novosibirsk State University
Russian Federation


V. N. Rogozhnikov
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk
Russian Federation


P. V. Snytnikov
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk
Russian Federation


S. D. Badmaev
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk
Russian Federation


References

1. Агарков Д.А., Бредихин С.И. Твердооксидные топливные элементы (ТОТЭ) и энергоустановки // Энергоэксперт. 2021. Т. №3. С. 6–8.

2. Kirillov V.A., Kuzin N.A., Amosov Y.I., Kireenkov V. V., Sobyanin V.A. Catalysts for the conversion of hydrocarbon and synthetic fuels for onboard syngas generators // Catal. Ind. 2011. Vol. 3, № 2. P. 176–182. https://doi.org/10.1134/S2070050411020073.

3. Потемкин Д.И., Усков С.И., Горлова А.М., Кириллов В.А., Шигаров А.Б., Брайко А.С., Рогожников В.Н., Снытников П.В., Печенкин А.А., Беляев В.Д., Пименов А.А., Собянин В.А. Низкотемпературная паровая конверсия природного газа в метано-водородные смеси // Катализ в промышленности. 2020. Т. 20, № 3. С. 184–189. https://doi.org/10.18412/1816-0387-2020-3-184-189.

4. Бадмаев С.Д., Беляев В.Д., Потемкин Д.И., Снытников П.В., Собянин В.А., Хартон В.В. Разложение метанола в синтез-газ на нанесенных Pt-содержащих катализаторах // Катализ в промышленности. 2023. Т. 23, № 2. С. 26–33. https://doi.org/10.18412/1816-0387-2023-2-26-33.

5. Ranjekar A.M., Yadav G.D. Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope // Ind. Eng. Chem. Res. 2021. Vol. 60, № 1. P. 89–113. https://doi.org/10.1021/acs.iecr.0c05041.

6. Sá S., Silva H., Brandão L., Sousa J.M., Mendes A. Catalysts for methanol steam reforming-A review // Appl. Catal. B Environ. 2010. Vol. 99, № 1–2. P. 43–57. https://doi.org/10.1016/j.apcatb.2010.06.015.

7. Анализ мирового рынка метанола в 2019 - 2023 гг, прогноз на 2024 - 2028 гг // ООО "БизнесСтат", Москва, 2023. С. 50.

8. Irena and Methanol Intitute, Innovation Outlook : Renewable Methanol // International Renewable Energy Agency., 2021. P. 122.

9. Yang W.W., Ma X., Tang X.Y., Dou P.Y., Yang Y.J., He Y.L. Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion // Fuel. 2023. Vol. 345. P. 23. https://doi.org/10.1016/j.fuel.2023.128234.

10. Sá S., Silva H., Brandão L., Sousa J.M., Mendes A. Catalysts for methanol steam reforming—A review // Appl. Catal. B Environ., 2010. Vol. 99, № 1–2. P. 43–57. https://doi.org/10.1016/J.APCATB.2010.06.015.

11. Mrad M., Gennequin C., Aboukaïs A., Abi-Aad E. Cu/Zn-based catalysts for H2 production via steam reforming of methanol // Catal. Today., 2011. Vol. 176, № 1. P. 88–92. https://doi.org/10.1016/j.cattod.2011.02.008.

12. Yong S.T., Ooi C.W., Chai S.P., Wu X.S. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes // Int. J. Hydrogen Energy. 2013. Vol. 38, № 22. P. 9541–9552. https://doi.org/10.1016/j.ijhydene.2013.03.023.

13. Iwasa N., Masuda S., Ogawa N., Takezawa N. Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction // Appl. Catal. A, Gen. 1995. Vol. 125, № 1. P. 145–157. https://doi.org/10.1016/0926-860X(95)00004-6.

14. Iwasa N., Mayanagi T., Ogawa N., Sakata K., Takezawa N. New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-in alloys in the conversions of methanol // Catal. Letters. 1998. Vol. 54, № 3. P. 119–123. https://doi.org/10.1023/A:1019056728333.

15. Papavasiliou J., Avgouropoulos G., Ioannides T. Production of hydrogen via combined steam reforming of methanol over CuO-CeO2 catalysts // Catal. Commun. 2004. Vol. 5, № 5. P. 231–235. https://doi.org/10.1016/j.catcom.2004.02.009.

16. Liu Y., Hayakawa T., Suzuki K., Hamakawa S. Production of hydrogen by steam reforming of methanol over Cu/CeO2 catalysts derived from Ce1 xCuxO2 x precursors // Catal. Commun. 2001. Vol. 2, № 6–7. P. 195–200. https://doi.org/10.1016/S1566-7367(01)00033-4.

17. Patel S., Pant K.K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol // J. Power Sources. 2006. Vol. 159, № 1. P. 139–143. https://doi.org/10.1016/j.jpowsour.2006.04.008.

18. Iwasa N., Masuda S., Takezawa N. Steam reforming of methanol over Ni, Co, Pd and Pt supported on ZnO // React. Kinet. Catal. Lett. 1995. Vol. 55, № 2. P. 349–353. https://doi.org/10.1007/BF02073070.

19. Shanmugam V., Neuberg S., Zapf R., Pennemann H., Kolb G. Hydrogen production over highly active Pt based catalyst coatings by steam reforming of methanol: Effect of support and co-support // Int. J. Hydrogen Energy., 2020. Vol. 45, № 3. P. 1658–1670. https://doi.org/10.1016/j.ijhydene.2019.11.015.

20. Takezawa N., Iwasa N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals // Catal. Today. 1997. Vol. 36, № 1. P. 45–56. https://doi.org/10.1016/S0920-5861(96)00195-2.

21. Silva L.P.C., Terra L.E., Coutinho A.C.S.L.S., Passos F.B. Sour water–gas shift reaction over Pt/CeZrO2 catalysts // J. Catal. 2016. Vol. 341. P. 1–12. https://doi.org/10.1016/j.jcat.2016.05.024.

22. Ruiz J.A.C., Passos F.B., Bueno J.M.C., Souza-Aguiar E.F., Mattos L. V., Noronha F.B. Syngas production by autothermal reforming of methane on supported platinum catalysts // Appl. Catal. A Gen. 2008. Vol. 334, № 1–2. P. 259–267. https://doi.org/10.1016/j.apcata.2007.10.011.

23. Badmaev S.D., Belyaev V.D., Konishcheva M. V., Kulikov A. V., Pechenkin A.A., Potemkin D.I., Rogozhnikov V.N., Snytnikov P. V., Sobyanin V.A. Catalysts and Catalytic Processes for the Production of Hydrogen-Rich Gas for Fuel Cell Feeding // Chem. Probl. 2019. Vol. 17, № 2. P. 193–204. https://doi.org/10.32737/2221-8688-2019-2-193-204.

24. Rogozhnikov V.N., Salanov A.N., Potemkin D.I., Glotov A.P., Boev S. V., Snytnikov P. V. Synthesis and studies of structured support Ce0.75Zr0.25O2/θ Al2O3/FeCrAl // Mater. Lett., 2021. Vol. 283. P. 128855. https://doi.org/10.1016/j.matlet.2020.128855.

25. Shoynkhorova T.B., Simonov P.A., Potemkin D.I., Snytnikov P. V., Belyaev V.D., Ishchenko A. V., Svintsitskiy D.A., Sobyanin V.A. Highly dispersed Rh-, Pt-, Ru/Ce0.75Zr0.25O2–Δ catalysts prepared by sorption-hydrolytic deposition for diesel fuel reforming to syngas // Appl. Catal. B Environ., 2018. Vol. 237. P. 237–244. https://doi.org/10.1016/j.apcatb.2018.06.003.


Review

For citations:


Kuznetsova A.D., Rogozhnikov V.N., Snytnikov P.V., Badmaev S.D. Methanol Steam Reforming to Hydrogen-Containing Gas over Supported Platinum-Containing Catalysts. Kataliz v promyshlennosti. 2025;25(2):79-86. (In Russ.) https://doi.org/10.18412/1816-0387-2025-2-79-86

Views: 223


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)