

Исследование системы Ni/γ-Al2O3 в качестве сорбента кислорода
https://doi.org/10.18412/1816-0387-2025-3-3-16
Аннотация
Работа посвящена проблеме удаления следовых количеств кислорода из углеводородных газовых смесей с помощью твердого сорбента на основе Ni, нанесенного на γ-Al2O3. Изучаемые сорбенты были получены методом пропитки алюмооксидных носителей из недостатка, раствором, содержащим соединения-предшественники никеля. В ходе исследования варьировались содержание активного компонента в образцах (4–8 мас.%), природа носителя (γ-Al2O3, сформованный с добавлением CH3COOH или NH3), а также природа используемой в ходе пропитки соли никеля (нитрат никеля и аммиачный комплекс карбоната гидроксоникеля (II)). Приготовленные сорбенты были охарактеризованы методами термогравиметрического анализа (ТГА), просвечивающей электронной микроскопии (ПЭМ) и импульсной хемосорбции СО, О2. Полученные методом ПЭМ микроснимки поверхности показали, что частицы никеля имеют схожий размер (~2–3 нм) в сорбентах, полученных как из нитрата, так и из аммиачного комплекса карбоната гидроксоникеля (II). Результаты импульсной хемосорбции СО, однако, показали существенное различие в среднем размере частиц Ni: 1,5–2,5 нм и 5,9–7,9 нм для нитрата и аммиачного комплекса соответственно. Наблюдаемое различие между экспериментальными данными было связано с большей склонностью аммиачного комплекса образовывать более инертную никель-алюминиевую шпинель, которая восстанавливается при крайне высоких температурах, и, как следствие, не фиксируется методом импульсной хемосорбции. В дополнение следует указать, что результаты импульсной хемосорбции О2 показали, что основным фактором, влияющим на наблюдаемую емкость сорбентов, является активная и доступная площадь поверхности никелевых частиц. Однозначного влияния используемого носителя на сорбционную активность не выявлено. Также предложена технологическая схема процесса улавливания кислорода из углеводородной смеси на Ni/γ-Al2O3 с последующей регенерацией сорбента в токе водорода.
Об авторах
О. А. МаксимоваРоссия
М. М. Бородаевский
Россия
Ю. В. Дубинин
Россия
С. А. Степаненко
Россия
П. С. Рувинский
Россия
В. А. Яковлев
Россия
Список литературы
1. Friedlingstein P., Jones M., O'Sullivan M., Andrew R. Global Carbon Budget 2021 // Earth System Science Data. 2022. Т. 14. С. 1917-2005.
2. Cheng W., Dan L., Deng X., Feng J., Wang Y., Peng J., Tian J., Qi W., Liu Z., Zheng X., Zhou D., Jiang S., Zhao H., Wang X. Global Monthly Gridded Atmospheric Carbon Dioxide Concentrations under the Historical and Future Scenarios // Sci. Data. 2022. Т. 9. № 1. С. 1–13. https://doi.org/10.1038/s41597-022-01196-7.
3. Ocko I. B., Sun T., Shindell D., Oppenheimer M., Hristov A. N., Pacala S. W., Mauzerall D. L., Xu Y., Hamburg S. P. Acting Rapidly to Deploy Readily Available Methane Mitigation Measures by Sector Can Immediately Slow Global Warming // Environ. Res. Lett. 2021. Т. 16. № 5. https://doi.org/10.1088/1748-9326/abf9c8.
4. Zhao P., Zhang G., Sun Y., Xu Y. A Review of Oxygen Removal from Oxygen-Bearing Coal-Mine Methane // Environ. Sci. Pollut. Res. 2017. Т. 24. № 18. С. 15240–15253. https://doi.org/10.1007/s11356-017-8916-6.
5. Schwietzke S., Sherwood O. A., Bruhwiler L. M. P., Miller J. B., Etiope G., Dlugokencky E. J., Michel S. E., Arling V. A., Vaughn B. H., White J. W. C., Tans P. P. Upward Revision of Global Fossil Fuel Methane Emissions Based on Isotope Database // Nature - 2016 - Т. 538 - № 7623 - С. 88–91. https://doi.org/10.1038/nature19797.
6. Патент US 20090107333, опубл. 30.04.2009
7. Койшыбаев А. Д. Низкотемпературные Процессы Очистки Сжиженного Отбензиненного Газа Высокого Качества // Молодой ученый - 2014 - Т. 3 - № 62 - С. 302–304.
8. Harmonization of natural gas quality // EASEE-gas - Париж - 2008 - Отчет № CBP 2005-001/02, С. 1-7
9. СТО Газпром 089-2010 Издание официальное Газ горючий природный, поставляемые и транспортируемый по магистральным газопроводам. Технические условия. Взамен ОСТ 51.40-93; Введен 25.10.2010. Москва: «Газпром экспо», 2011. 19 с.
10. Jones R., McIntush K., Wallace C. Oxygen Removal in Natural Gas Systems // Laurance Reid Gas Conditioning Conference. 20-23 февраля 2011 г. - Норман, 2011 - С. 1-15.
11. Lu H., Schideman L., Ye Q., Lu Y. High-Efficiency Catalytic Reduction of Residual Oxygen for Purification of Carbon Dioxide Streams from High-Pressure Oxy-Combustion Systems // React. Chem. Eng. - 2021 - Т. 6 - № 7 - С. 1220–1229. https://doi.org/10.1039/d0re00481b.
12. Lee H. D., Trimm D. L. Catalytic Combustion of Methane // Fuel Processing Technology - 1995 - № 42 - С. 305–327. https://doi.org/10.1016/0378-3820(94)00091-7.
13. Wang S., Tan Z., Ma L. Deoxygenation experiment of oxygen coalbed methane with membrane method // Oil Gas Stor. Transp. - 2012 - Т. 31 - №8 - С. 585-587.
14. Qu S., Dong W., Chen Y. Research and application of the low concentrated coal bed methane upgrading technique // Journal of China Coal Society - 2014 - Т. 39 - №8 - С. 1540-1544. https://doi.org/10. 13225 /j. cnki. jccs. 2014. 9035.
15. Raabe T., Mehne M., Krause H., Kureti S., Study on iron-based adsorbents for alternating removal of H2S and O2 from natural gas and biogas // Chemical Engineering Journal - 2019 - Т. 371 - С. 738-749. https://doi.org/10.1016/j.cej.2019.04.103.
16. Larkins F. P., Fensham P. J. Adsorption of Oxygen on High Area Nickel Oxide. Part 2. - Dark and Photo Adsorption // Trans. Faraday Soc. - 1970 - № 66 - С. 1755–1772. https://doi.org/10.1039/TF9706601755.
17. Bloch E. D., Murray L. J., Queen, W. L., Chavan S., Maximoff S. N., Bigi J. P., Krishna R., Peterson V. K., Grandjean F., Long G. J., Smit B., Bordiga S., Brown C. M., Long J. R. Selective Binding of O2 over N2 in a Redox-Active Metal-Organic Framework with Open Iron(II) Coordination Sites // J. Am. Chem. Soc. - 2011 - Т. 133 - № 37 - С. 14814–14822. https://doi.org/10.1021/ja205976v.
18. Carsch K. M., Huang A. J., Dods M. N., Parker S. T., Rohde R. C., Jiang H. Z. H., Yabuuchi Y., Karstens S. L., Kwon H., Chakraborty R., Bustillo K. C., Meihaus K. R., Furukawa H., Minor A. M., Head-Gordon M., Long J. R. Selective Adsorption of Oxygen from Humid Air in a Metal-Organic Framework with Trigonal Pyramidal Copper (I) Sites. // J. Am. Chem. Soc. - 2024 - Т. 146 - № 5 - С. 3160–3170. https://doi.org/10.1021/jacs.3c10753.
19. Bartholomew C. H., Farrauto R. J. Chemistry of Nickel-Alumina Catalysts // J. Catal. - 1976 - Т. 45 - №1 - С. 41–53. https://doi.org/10.1016/0021-9517(76)90054-3.
20. Millman W.S., Bartholomew C.H., Richardson R.L. Oxygen chemisorption: Its relationship to hydrotreating activity of alumina-supported nickel-molybdenum catalysts // Journal of catalysis - 1984 - Т. 90 - С. 10-16.
21. Garcia Fierro J.L., Soria J., Lopez Agudo A. A gravimetric, ESR and oxygen chemisorption study of the effect of nickel on the reduction of molybdenum in MoNi/γ-Al2O3 catalysts // Applied Catalysis - 1982 - Т.3 - С. 117-129.
22. Huang J., Liu W., Hu W., Metcalfe I., Yang Y., Liu B. Phase Interactions in Ni-Cu-Al2O3 Mixed Oxide Oxygen Carriers for Chemical Looping Applications // Appl. Energy - 2019 - Т. 236 - С. 635–647. https://doi.org/10.1016/j.apenergy.2018.12.029.
23. Dueso C., Ortiz M. Abad A., Garcia-Labiano F. de Diego L., Gayan P., Adanez J. Reduction and oxidation kinetics of nickel-based oxygen carriers for chemical-looping combustion and chemical-looping reforming // Chemical Engineering Journal - 2012 - Т. 188 - С. 142-154.
24. Peppel T., Seeburg D., Fulda G., Kraus M., Trommler U., Roland U., Wohlrab S. Methods for the Trace Oxygen Removal from Methane-Rich Gas Streams. // Chem. Eng. Technol. - 2017 - Т. 40 - № 1 - С. 153–161. https://doi.org/10.1002/ceat.201600171.
25. Wiesmann T., Hamel C., Kaluza S. Techniques to Remove Traces of Oxygen by Catalytic Conversion from Gas Mixtures // Chemie Ingenieur Technik - 2018 - Т. 90 - №10 - С. 1446–1452. https://doi.org/10.1002/cite.201800022.
26. Leak R.J., Selwood P.W. The chemisorption of oxygen on nickel // J. Am. Chem. Soc. - 1958 - Т. 64 - №80 - С. 1114-1120.
27. Müller J. A Study of the Oxygen Adsorption on Nickel // J. Catal. - 1966 - Т. 6 - №1 - С. 50–56. https://doi.org/10.1016/0021-9517(66)90108-4.
28. Mitchell, D. F. kinetic study of the initial oxidation of the Ni (001) surface by RHEED and x-ray emission / D. F. Mitchell, P. B. Sewell, M. A. Cohen // Surface Science. − 1976. − Vol. 61. − №. 2. − P. 355-376.
29. Holloway P. H., Hudson J. B. Kinetics of the Reaction of Oxygen with Clean Nickel Single Crystal Surfaces. I. Ni(100) Surface // Surf. Sci. - 1974 - Т. 43 - №1 - С. 123–140. https://doi.org/10.1016/0039-6028(74)90223-4.
30. Rozita Y., Brydson R., Comyn T. P., Scott A. J., Hammond C., Brown A., Chauruka S., Hassanpour A., Young N. P., Kirkland A. I., Sawada H., Smith R. I. A Study of Commercial Nanoparticulate γ-Al2O3 Catalyst Supports // Chem. Cat. Chem. - 2013 - Т. 5 - №9 - С. 2695–2706. https://doi.org/10.1002/cctc.201200880.
31. Qiu H., Ran J., Huang X., Ou Z., Niu J. Unrevealing the Influence That Preparation and Reaction Parameters Have on Ni/Al2O3 Catalysts for Dry Reforming of Methane // Int. J. Hydrogen Energy - 2022 - Т. 47 - № 80 - С. 34066–34074. https://doi.org/10.1016/j.ijhydene.2022.08.014.
32. Molina R., Poncelet G. Hydrogenation of Benzene over Alumina-Supported Nickel Catalysts Prepared from Ni(II) Acetylacetonate // J. Catal. - 2001 - Т. 199 № 2 - С. 162–170.162–170. https://doi.org/10.1006/jcat.2001.3169
33. Li F., Yi X., Fang W. Effect of Organic Nickel Precursor on the Reduction Performance and Hydrogenation Activity of Ni/Al2O3 Catalysts // Catal. Letters 2009 - Т. 130 - № 3–4 - С. 335–340. https://doi.org/10.1007/s10562-009-0030-z.
34. Brockner W., Ehrhardt C., Gjikaj M. Thermal Decomposition of Nickel Nitrate Hexahydrate, Ni(NO3)2•6H2O, in Comparison to Co(NO3)2•6H2O and Ca(NO3)2•4H2О // Thermochim. Acta - 2007 - Т. 456 - № 1 - С. 64–68. https://doi.org/10.1016/j.tca.2007.01.031.
35. Патент СССР №272283, опубл. 03.06.1970.
36. Danilevich V. V., Klimov O. V., Nadeina K. A., Gerasimov E. Y., Cherepanova S. V., Vatutina Y. V., Noskov A. S. Novel Eco-Friendly Method for Preparation of Mesoporous Alumina from the Product of Rapid Thermal Treatment of Gibbsite // Superlattices Microstruct. - 2018 - Т. 120 - С. 148–160. https://doi.org/10.1016/j.spmi.2018.05.025.
37. Jirátová K., Janáček L., Schneider P. Influence of Aluminium Hydroxide Peptization on Physical Properties of Alumina Extrudates // Stud. Surf. Sci. Catal. - 1983 - Т. 16 - №C - С. 653–663. https://doi.org/10.1016/S0167-2991(09)60056-2.
38. Ewald S., Standl S., Hinrichsen O. Characterization of Nickel Catalysts with Transient Methods // Appl. Catal. A Gen. - 2018 - Т. 549 - С. 93–101. https://doi.org/10.1016/j.apcata.2017.09.023.
39. Hart L., Lense E. Alumina Chemicals: Science and Technology Handbook: John Wiley & Sons, 1990. - 640 с.
40. Rahmani S., Rezaei M., Meshkani F. Preparation of Highly Active Nickel Catalysts Supported on Mesoporous Nanocrystalline γ-Al2O3 for CO2 Methanation // J. Ind. Eng. Chem. - 2014 - Т. 20 - № 4 - С. 1346–1352. https://doi.org/10.1016/j.jiec.2013.07.017.
41. Матвейчук Ю.В., Визгунов К.А. Влияние очередности смешения реагентов на термическое разложение основных сульфатов и карбонатов никеля (II) // Химия и химическая технология - 2015 - Т. 58 - №8 - С. 48-53
42. Ямукян М.А., Манукян Х.В., Харатян С.Л. Получение порошкообразного никеля восстановлением основного карбоната никеля в режиме горения // Химический журнал Армении - 2008 - Т. 61 - №2 - С. 159–166.
43. Zhou L., Deshpande K., Zhang X., Agarwal R. K. Process Simulation of Chemical Looping Combustion Using ASPEN plus for a Mixture of Biomass and Coal with Various Oxygen Carriers // Energy - 2020 - Т. 195 - C. 116955 https://doi.org/10.1016/j.energy.2020.116955.
44. Zhang J., Wang Y., Zhang Y., Wu Q., Xin L., Zhou Y., Yin K., Wang Y., Li X., Cui P. A Novel Power, DME, and Ammonia Polygeneration System Using Aspen plus Based on the Integration of Biomass Gasification and Syngas Chemical Looping // Energy Convers. Manag. - 2024 - Т. 299 - С. 117808. https://doi.org/10.1016/j.enconman.2023.117808.
45. Ковалев Б.К. Определение Пропускной Способности Трубопроводов ГРС // Вестник Газпроммаша - 2011 - № 5 - С. 64–66.
46. Howard T., Ferrara T. W., Townsend-Small A. Sensor Transition Failure in the High Flow Sampler: Implications for Methane Emission Inventories of Natural Gas Infrastructure // J. Air Waste Manag. Assoc. - 2015 - Т. 65 - № 7 - С. 856–862. https://doi.org/10.1080/10962247.2015.1025925.
Рецензия
Для цитирования:
Максимова О.А., Бородаевский М.М., Дубинин Ю.В., Степаненко С.А., Рувинский П.С., Яковлев В.А. Исследование системы Ni/γ-Al2O3 в качестве сорбента кислорода. Катализ в промышленности. 2025;25(3):3-16. https://doi.org/10.18412/1816-0387-2025-3-3-16
For citation:
Maksimova O.A., Borodaevskiy M.M., Dubinin Yu.V., Stepanenko S.A., Ruvinskiy P.S., Yakovlev V.A. Investigation of Ni/γ-Al2O3 as a promising oxygen sorbent. Kataliz v promyshlennosti. 2025;25(3):3-16. (In Russ.) https://doi.org/10.18412/1816-0387-2025-3-3-16