Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Sulfuric acid alkylation of isobutane with olefins in a microemulsion medium in the presence of dimethyldioctadecyl ammonium salt

https://doi.org/10.18412/1816-0387-2025-3-76-89

Abstract

The formation of Winsor III microemulsion in concentrated H2SO4 + C4-C6 alkanes system was detected for the first time with the addition of a quaternary ammonium salt, dimethyl-dioctadecyl-ammonium chloride (C18H37)2N+(CH3)2Cl-, as a surfactant. The effect of this microemulsion formation on the parameters of the sulfuric acid alkylation reaction of isobutane (iB) with 1-butene (1b) and 1-pentene (1p) was studied. The addition of only 0.03 wt. % of surfactant to H2SO4 resulted in a sharp change in many process parameters relative to the process using pure H2SO4: an increase in isobutane conversion by 1.5-2 times, the yield of C8 products by olefin up to 2 times, and the RON reaching 100 points. Using the NMR method, it was determined that after the alkylation reaction of isobutane with 1-butene in the presence of a microemulsion, the amount of acid-soluble oils (ASO) formed decreases by 15-20 times compared to unmodified acid.

About the Authors

A. V. Nikityonok
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


D. P. Ivanov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


D. E. Babushkin
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. O. Kuzmin
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


References

1. Ахмадова Х.Х. и др. История, современное состояние и перспективы развития процесса алкилирования изобутана олефинами // Химическая технология. 2018. Vol. 19, № 3. P. 101–118.

2. Albright L.F. ChemInform Abstract: Updating Alkylate Gasoline Technology // ChemInform. 1998. Vol. 29, № 34.

3. Albright L.F. Present and future alkylation processes in refineries // Ind. Eng. Chem. Res. 2009. Vol. 48, № 3. P. 1409–1413.

4. Солодова Н.Л., Хасанов И.Р. Перспективные процессы алкилирования изопарафинов олефинами // Вестник Технологического Университета. 2015. Vol. 18, № 9. P. 117–121.

5. Солодова Н.Л. и др. Современные технологии производства компонентов моторных топлив. Старый Оскол: ООО «Тонкие наукоемкие технологии», 2018. 324 p.

6. Nafis D.A., Detrick K.A., Mehlberg R.L. Alkylation in Petroleum Processing // Handbook of Petroleum Processing / ed. Treese S.A., Pujadó P.R., Jones D.S.J. Cham: Springer International Publishing, 2015. P. 435–456.

7. Козин В.Г. и др. Современные Технологии Производства Компонентов Моторных Топлив. Казань: КГТУ, 2009. 324 p.

8. Магомадова М.Х., Ахмадова А.Р., Ахмадова Х.Х. Алкилат - основной компонент высокооктановых бензинов // Вестник ГГНТУ. Технические науки. 2019. Vol. XV, № 4(18). P. 49–59.

9. Солодова Н.Л., Абдуллин А.И., Емельянычева Е.А. Алкилирование изопарафинов олефинами // Вестник Казанского Технологического Университета. 2013. Vol. 16, № 18. P. 253–258.

10. Krylov V.A. et al. Sulfuric Acid Alkylation In The Presence Of Surfactants // Chem. Technol. Fuels Oils. 1990. Vol. 1. P. 19–21.

11. Albright L.F., Eckert R.E. Formation and separation of sulfuric acid/n-heptane dispersions: Applications to alkylation // Ind. Eng. Chem. Res. 2001. Vol. 40, № 19. P. 4032–4039.

12. Albright L.F. Alkylation of isobutane with C3-C5 olefins: Feedstock consumption, acid usage, and alkylate quality for different processes // Ind. Eng. Chem. Res. 2002. Vol. 41, № 23. P. 5627–5631.

13. Li K.W., Eckert R.E., Albright L.F. Alkylation of Isobutane with Light Olefins Using Sulfuric Acid. Operating Variables Affecting Both Chemical and Physical Phenomena // Ind. Eng. Chem. Process Des. Dev. 1970. Vol. 9, № 3. P. 441–446.

14. Дорогочинский А.З., Лютер А.В., Вольпова Е.Г. Сернокислотное алкилирование изопарафинов олефинами. Москва: Химия, 1970. 216 p.

15. Li L. et al. Caprolactam as a New Additive To Enhance Alkylation of Isobutane and Butene in H2SO4 // Ind. Eng. Chem. Res. 2016. Vol. 55, № 50. P. 12818–12824.

16. Chen W.-S. Solubility measurements of isobutane/alkenes in sulfuric acid: applications to alkylation // Appl. Catal. A Gen. 2003. Vol. 255, № 2. P. 231–237.

17. Huang Q. et al. Improved Catalytic Lifetime of H2SO4 for Isobutane Alkylation with Trace Amount of Ionic Liquids Buffer // Ind. Eng. Chem. Res. 2015. Vol. 54, № 5. P. 1464–1469.

18. Prochukhan K.Y. et al. New method for sulfuric acid alkylation of isoparaffins with olefins // Chem. Technol. Fuels Oils. 1999. Vol. 35, № 2. P. 65–67.

19. Ryabov V.G. et al. Promotion of sulfuric acid by surfactants in alkylation process // Chem. Technol. Fuels Oils. 1992. Vol. 28, № 10. P. 547–550.

20. Ma Z. et al. Enhanced catalytic performance of H2SO4 ‐catalyzed C4 alkylation by formyl functional [ N 1,1,1,1][ C10SO4] additive // AIChE J. 2023. Vol. 69, № 11.

21. Nicholas C.P. et al. Sulfuric acid catalyzed alkylation process: pat. US11639322B2 USA // US 11639322 B2. 2023.

22. Zheng W. et al. H2SO4-catalyzed isobutane alkylation under low temperatures promoted by long-alkyl-chain surfactant additives // AIChE J. 2021. P. e17349.

23. Zheng W. et al. Understanding interfacial behaviors of isobutane alkylation with C4 olefin catalyzed by sulfuric acid or ionic liquids // AIChE J. 2018. Vol. 64, № 3. P. 950–960.

24. Zhao Y. et al. Improvement of product distribution through enhanced mass transfer in isobutane/butene alkylation // Chem. Eng. Res. Des. 2019. Vol. 143. P. 190–200.

25. Кудинов А.В., Рябов В.Г., Углев Н.П. Механизм действия ПАВ в процессе сернокислотного алкилирования изобутана олефинами // Научно-технический вестник Поволжья : Технические науки. 2014. Vol. 2. P. 151–160.

26. Рябов В.Г. и др. Влияние присадок на межфазное натяжение и устойчивость эмульсии кислота-алкилат // Химия и технология топлив и масел. 1984. № 5. P. 38–39.

27. Brockington J.W., Bennett R.H. Alkylation process for production of motor fuels utilizing sulfuric acid catalyst with trifluoromethane sulfonic acid: pat. US3970721A USA // US3970721A. 1976.

28. Mehta S.K., Kaur G. Microemulsions: Thermodynamic and Dynamic Properties // Thermodynamics / ed. Tadashi M. Rijeka: IntechOpen, 2011.

29. Tartaro G. et al. Microemulsion Microstructure(s): A Tutorial Review // Nanomaterials. 2020. Vol. 10, № 9.

30. Mitchell D.J., Ninham B.W. Micelles, vesicles and microemulsions // J. Chem. Soc. Faraday Trans. 2. The Royal Society of Chemistry, 1981. Vol. 77, № 4. P. 601–629.

31. Sottmann T., Stubenrauch C. Phase Behaviour, Interfacial Tension and Microstructure of Microemulsions // Microemulsions. Wiley-Blackwell, 2009. P. 1–47.

32. Holmberg K. Organic Reactions in Microemulsions // European J. Org. Chem. 2007. Vol. 2007, № 5. P. 731–742.

33. Holmberg K. Organic reactions in microemulsions // Curr. Opin. Colloid Interface Sci. Elsevier, 2003. Vol. 8, № 2. P. 187–196.

34. Salager J.-L. et al. How to Attain Ultralow Interfacial Tension and Three-Phase Behavior with Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 4: Robustness of the Optimum Formulation Zone Through the Insensibility to Some Variables and the Occurrence of Compl // J. Surfactants Deterg. 2017. Vol. 20, № 5. P. 987–1018.

35. Salager J.-L., Forgiarini A.M., Bullón J. How to Attain Ultralow Interfacial Tension and Three-Phase Behavior with Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 1. Optimum Formulation for Simple Surfactant–Oil–Water Ternary Systems // J. Surfactants Deterg. 2013. Vol. 16, № 4. P. 449–472.

36. Salager J.-L. et al. How to Attain an Ultralow Interfacial Tension and a Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 2. Performance Improvement Trends from Winsor’s Premise to Currently Proposed Inter- and Intra-Molecular Mixtu // J. Surfactants Deterg. 2013. Vol. 16, № 5. P. 631–663.

37. Salager J.-L., Forgiarini A.M., Rondón M.J. How to Attain Ultralow Interfacial Tension and Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: a Review—Part 3. Practical Procedures to Optimize the Laboratory Research According to the Current State of the Art in Surfactant // J. Surfactants Deterg. 2016. Vol. 20, № 1. P. 3–19.

38. Salager J.-L. et al. Formulation of Microemulsions // Microemulsions. Wiley-Blackwell, 2009. P. 84–121.

39. Winsor P.A. Hydrotropy, solubilisation and related emulsification processes. Parts V-VIII // Trans. Faraday Soc. The Royal Society of Chemistry, 1948. Vol. 44, № 0. P. 451–471.

40. Winsor P.A. Hydrotropy, solubilization and related emulsification processes. Part IX // Trans. Faraday Soc. The Royal Society of Chemistry, 1950. Vol. 46, № 0. P. 762–772.

41. Winsor P.A. Hydrotropy, solubilisation and related emulsification processes. Parts I-IV // Trans. Faraday Soc. The Royal Society of Chemistry, 1948. Vol. 44, № 0. P. 376–398.

42. Rico-Lattes I. et al. Organized molecular systems as reaction media // Comptes Rendus Chim. 2011. Vol. 14, № 7. P. 700–715.

43. Dwars T., Paetzold E., Oehme G. Reactions in Micellar Systems // Angew. Chemie Int. Ed. 2005. Vol. 44, № 44. P. 7174–7199.

44. Ghosh P., Hickey K.J., Jaffe S.B. Development of a Detailed Gasoline Composition-Based Octane Model // Ind. Eng. Chem. Res. 2006. Vol. 45, № 1. P. 337–345.

45. Salager J.-L. et al. Enhancing solubilization in microemulsions—State of the art and current trends // J. Surfactants Deterg. 2005. Vol. 8, № 1. P. 3–21.

46. Warr G.G. et al. Microemulsion formation and phase behavior of dialkydimethylammonium bromide surfactants // J. Phys. Chem. 1988. Vol. 92, № 3. P. 774–783.

47. Fressancourt-Collinet M. et al. Acidic three-liquid-phase microemulsion systems based on balanced catalytic surfactant for epoxidation and sulfide oxidation under mild conditions // Adv. Synth. Catal. 2013. Vol. 355, № 2–3. P. 409–420.

48. Manier M.L. et al. Identification of dimethyldioctadecylammonium ion (m/z 550.6) and related species (m/z 522.6, 494.6) as a source of contamination in mass spectrometry // J. Am. Soc. Mass Spectrom. 2008. Vol. 19, № 5. P. 666–670.

49. Scarpa M.V. et al. Effect of Vesicles of Dimethyldioctadecylammonium Chloride and Phospholipids on the Rate of Decarboxylation of 6-Nitrobenzisoxazole-3-carboxylate // Langmuir. 2000. Vol. 16, № 3. P. 993–999.

50. Kranz K.E., Millard J.K. Alkylation Of Olefins Utilizing Mixtures Of Isoparaffins // US 5583275. Stratco, Inc., Leawood, Kane, 1996. № 293,049.

51. Gary J.H. et al. Petroleum Refining // Petroleum Refining. CRC Press, 2007. 741–761 p.

52. Albright L.F., Kranz K.E., Masters K.R. Alkylation of isobutane with light olefins. Yields of alkylates for different olefins // Ind. Eng. Chem. Res. 1993. Vol. 32, № 12. P. 2991–2996.

53. Albright L.F., Kranz K.E. Alkylation of isobutane with pentenes using sulfuric acid as a catalyst: chemistry and reaction mechanisms // Ind. Eng. Chem. Res. 1992. Vol. 31, № 2. P. 475–481.

54. Albright L.F. Alkylation of Isobutane with C3−C5 Olefins To Produce High-Quality Gasolines: Physicochemical Sequence of Events // Ind. Eng. Chem. Res. 2003. Vol. 42, № 19. P. 4283–4289.

55. STRATCO® Alkylation Technology [Электронный ресурс]. URL: https://elessentct.com/technologies/stratco/ (дата обращения 14.10.2024).


Review

For citations:


Nikityonok A.V., Ivanov D.P., Babushkin D.E., Kuzmin A.O. Sulfuric acid alkylation of isobutane with olefins in a microemulsion medium in the presence of dimethyldioctadecyl ammonium salt. Kataliz v promyshlennosti. 2025;25(3):76-89. (In Russ.) https://doi.org/10.18412/1816-0387-2025-3-76-89

Views: 26


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)