Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The effect of the temperature of the diesel fuel hydrotreating process on the sorption of silicon on a NiMo/Al2O3 catalyst

https://doi.org/10.18412/1816-0387-2025-3-90-97

Abstract

The influence of the diesel fuel hydrotreating temperature on the patterns of silicon sorption on a NiMo/Al2O3 grain of a 2.5 mm diameter catalyst has been studied. The tests were carried out on a laboratory set up with a reactor in which the catalyst bed is divided (sectioned) into five parts in height by metal perforated partitions that are permeable to raw materials. This made it possible to obtain silicon concentration profiles along the height of the catalyst layer. decamethylcyclopentasiloxane, whose content was 200 ppm, was used as silicon compounds in the diesel fraction of oil. Three series of experiments with a duration of 200 hours were conducted at temperatures of 315, 340 and 365 OC.Astraight-run dieselfractioncontaining the additionof decamethylcyclopentasiloxane as an additionalsource of silicon was usedas a raw material. It was foundthatwithincreasingprocesstemperature, the ability of the catalysttoadsorbsiliconincreases.

About the Authors

I. S. Golubev
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


S. I. Reshetnikov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


P. P. Dick
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


R. V. Petrov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


I. A. Mik
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. S. Noskov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


References

1. Kressmann S., Morel F., Harlé V., Kasztelan S. Recent developments in fixed-bed catalytic residue upgrading // Catal. Today. 1998. Т. 43, № 3–4. С. 203–215. https://doi.org/10.1016/S0920-5861(98)00149-7.

2. Zeuthen P., Schmidt M.T., Rasmussen H.W., Moyse B.M. The benefits of cat feed hydrotreating and the impact of feed nitrogen on catalyst stability // NPRA Annu. Meet. Tech. Pap. 2010. Т. 2, № 1. С. 818–833.

3. Sánchez R., Todolí J.L., Lienemann C.P., Mermet J.M. Universal calibration for metal determination in fuels and biofuels by inductively coupled plasma atomic emission spectrometry based on segmented flow injection and a 350 °c heated chamber // J. Anal. At. Spectrom. 2012. Т. 27, № 6. С. 937–945. https://doi.org/10.1039/c2ja10336b.

4. Pohl P., Vorapalawut N., Bouyssiere B., Lobinski R. Trace-level determination and insight in speciation of silicon in petrochemical samples by flow-injection high resolution ICP MS and HPLC-high resolution ICP MS // J. Anal. At. Spectrom. 2010. Т. 25, № 9. С. 1461–1466. https://doi.org/10.1039/c005010e.

5. Nam S., Namkoong W., Kang J.H., Park J.K., Lee N. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test // Waste Manag. Elsevier Ltd, 2013. Т. 33, № 10. С. 2091–2098. https://doi.org/10.1016/j.wasman.2013.03.024.

6. Cabrera-Codony A., Montes-Morán M.A., Sánchez-Polo M., Martín M.J., Gonzalez-Olmos R. Biogas upgrading: Optimal activated carbon properties for siloxane removal // Environ. Sci. Technol. 2014. Т. 48, № 12. С. 7187–7195. https://doi.org/10.1021/es501274a.

7. Kellberg L., Zeuthen P., Jakobsen H.J. Deactivation of HDT Catalysts by Formation of Silica Gels from Silicone Oil. Characterization of Spent Catalysts from HDT of Coker Naphtha Using 29Si and 13C CP/MAS NMR // J. Catal. Academic Press, 1993. Т. 143, № 1. С. 45–51. https://doi.org/10.1006/JCAT.1993.1252.

8. Vaiss V.S., Fonseca C.G., Antunes F.P.N., Chinelatto L.S., Chiaro S.S.X., Souza W.F., Leitão A.A. Experimental and theoretical study of deactivated HDT catalysts by Si species deposited on their surfaces: Models proposition, structural and thermodynamic analysis // J. Catal. Elsevier Inc., 2020. Т. 389. С. 578–591. https://doi.org/10.1016/j.jcat.2020.06.007.

9. Olsen C. The ART of trapping silicon and arsenic // Digit. Refin. 2013. № February. С. 1–4.

10. Rana M.S., AlHumaidan F.S., Bouresli R., Navvamani R. Guard-bed catalyst: Impact of textural properties on catalyst stability and deactivation rate // Mol. Catal. Elsevier B.V., 2021. Т. 502, № 1. С. 111375. https://doi.org/10.1016/j.mcat.2020.111375.

11. Nadeina K.A., Kazakov M.O., Kovalskaya A.A., Danilova I.G., Cherepanova S. V., Danilevich V. V., Gerasimov E.Y., Prosvirin I.P., Kondrashev D.O., Kleimenov A. V., Klimov O. V., Noskov A.S. Influence of alumina precursor on silicon capacity of NiMo/γ-Al2O3 guard bed catalysts for gas oil hydrotreating // Catal. Today. Elsevier, 2020. Т. 353, № 1. С. 53–62. https://doi.org/10.1016/j.cattod.2019.10.028.

12. Pérez-Romo P., Navarrete-Bolaños J., Aguilar-Barrera C., Angeles-Chavez C., Laredo G.C. Morphological and structural study of the Si deposition on the sulfided NiMo/γ-Al2O3 catalyst: Effect on the support // Appl. Catal. A Gen. 2014. Т. 485. С. 84–90. https://doi.org/10.1016/j.apcata.2014.07.038.

13. Nadeina K.A., Kazakov M.O., Kovalskaya A.A., Danilevich V. V., Klimov O. V., Danilova I.G., Khabibulin D.F., Gerasimov E.Y., Prosvirin I.P., Ushakov V.A., Fedotov K. V., Kondrashev D.O., Kleimenov A. V., Noskov A.S. Guard bed catalysts for silicon removal during hydrotreating of middle distillates // Catal. Today. Elsevier, 2019. Т. 329. С. 53–62. https://doi.org/10.1016/J.CATTOD.2018.11.075.

14. Pérez-Romo P., Aguilar-Barrera C., Navarrete-Bolaños J., Rodríguez-Otal L.M., Beltrán F.H., Fripiat J. Silica poisoning in HDT catalysts by light coker naphtha // Appl. Catal. A Gen. 2012. Т. 449. С. 183–187. https://doi.org/10.1016/j.apcata.2012.10.001.

15. Boldushevskii R.E., Guseva A.I., Vinogradova N.Y., Naranov E.R., Maksimov A.L., Nikul’shin P.A. Evaluation of the Hydrodesulfurization Activity in Development of Catalysts for Demetallization of Heavy Petroleum Feedstock // Russ. J. Appl. Chem. 2018. Т. 91, № 12. С. 2046–2051. https://doi.org/10.1134/S1070427218120170.

16. Vatutina Y. V., Kazakov M.O., Nadeina K.A., Budukva S. V., Danilova I.G., Gerasimov E.Y., Suprun E.A., Prosvirin I.P., Nikolaeva O.A., Gabrienko A.A., Klimov O. V., Noskov A.S. Is it possible to reactivate hydrotreating catalyst poisoned by silicon? // Catal. Today. Elsevier, 2021. Т. 378. С. 43–56. https://doi.org/10.1016/J.CATTOD.2021.03.005.

17. Golubev I.S., Dik P.P., Petrov R. V., Mik I.A., Bessonova N. V., Reshetnikov S.I., Noskov A.S. Dynamics of Silicon Sorption on the NiMo/Al2O3 Guard Bed Catalyst During Hydrotreating of Diesel // Pet. Chem. Pleiades Publishing, 2023. Т. 63, № 10. С. 1203–1209. https://doi.org/10.1134/S0965544123090037.

18. Danilevich V. V., Klimov O. V., Nadeina K.A., Gerasimov E.Y., Cherepanova S. V., Vatutina Y. V., Noskov A.S. Novel eco-friendly method for preparation of mesoporous alumina from the product of rapid thermal treatment of gibbsite // Superlattices Microstruct. 2018. Т. 120, № May. С. 148–160.

19. Callejas M.A., Martínez M.T. Hydroprocessing of a Maya Residue. 1. Intrinsic Kinetics of Asphaltene Removal Reactions // Energy & Fuels. 2000. Т. 14, № 6. С. 1304–1308. https://doi.org/10.1021/ef000126h.

20. Kokayeff P., Zink S., Roxas P. Handbook of Petroleum Processing // Handbook of Petroleum Processing. 2015. 1–59 с. https://doi.org/10.1007/978-3-319-05545-9.

21. Toulhoat H., Raybaud P. Catalysis by Transition Metal Sulfides: from molecular theory to industrial application // Editions Technip. 2013. 737 с. https://doi.org/10.1016/s1351-4180(14)70127-8.

22. Qin X., Ye L., Hou L., Wang T., Ma M., Pu X., Han X., Liu J., Luan B., Liu P. A coupling model of fluid catalytic cracking and diesel hydrotreating processes to study the effects of reaction temperature on the composition of diesel // Chem. Eng. J. Elsevier, 2023. Т. 466. С. 143078. https://doi.org/10.1016/j.cej.2023.143078.

23. Мик И.А., Кленов О.П., Казаков M.O., Надеина К.А., Климов О.В., Решетников С.И., Носков А.С. Защита катализаторов гидроочистки нефтяных фракций от механических примесей: экспериментальные исследования и расчет // Катализ в промышленности. 2023. № 383. С. 70–79. https://doi.org/10.18412/1816-0387-2023-6-70-79.

24. Marafi M., Stanislaus A., Furimsky E. Handbook of Spent Hydroprocessing Catalysts // Handbook of Spent Hydroprocessing Catalysts. 2017. 67–140 с. https://doi.org/10.1016/B978-0-444-63881-6.00004-4.

25. Kam E.K.T., Al-Shamali M., Juraidan M., Qabazard H. A hydroprocessing multicatalyst deactivation and reactor performance model-pilot-plant life test applications // Energy and Fuels. 2005. Т. 19, № 3. С. 753–764. https://doi.org/10.1021/ef049843s.

26. Rodríguez E., Félix G., Ancheyta J., Trejo F. Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons // Fuel. Elsevier, 2018. Т. 225. С. 118–133. https://doi.org/10.1016/J.FUEL.2018.02.085.

27. Mapiour M., Sundaramurthy V., Dalai A.K., Adjaye J. Effects of the operating variables on hydrotreating of heavy gas oil: Experimental, modeling, and kinetic studies // Fuel. Elsevier, 2010. Т. 89, № 9. С. 2536–2543. https://doi.org/10.1016/j.fuel.2010.02.024.

28. Novaes L. da R., de Resende N.S., Salim V.M.M., Secchi A.R. Modeling, simulation and kinetic parameter estimation for diesel hydrotreating // Fuel. Elsevier, 2017. Т. 209. С. 184–193. https://doi.org/10.1016/J.FUEL.2017.07.092.

29. Britto J.M., Reboucas M. V., Bessa I. Troubleshoot silicon contamination on catalysts // Hydrocarb. Process. 2010. Т. 89, № 10. С. 1–5.

30. Ancheyta J., Rana M.S., Furimsky E. Hydroprocessing of heavy petroleum feeds: Tutorial // Catal. Today. 2005. Т. 109, № 1–4. С. 3–15. https://doi.org/10.1016/j.cattod.2005.08.025.


Review

For citations:


Golubev I.S., Reshetnikov S.I., Dick P.P., Petrov R.V., Mik I.A., Noskov A.S. The effect of the temperature of the diesel fuel hydrotreating process on the sorption of silicon on a NiMo/Al2O3 catalyst. Kataliz v promyshlennosti. 2025;25(3):90-97. (In Russ.) https://doi.org/10.18412/1816-0387-2025-3-90-97

Views: 74


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)