

Effect of CO2 content in synthesis gas on combined synthesis and hydrofining of hydrocarbons on Сo/SiO2+ZSM-5+Al2O3 catalyst
https://doi.org/10.18412/1816-0387-2025-4-11-18
Abstract
The paper studies the effect of CO2 content in synthesis gas on the process of combined synthesis and hydroconversion of hydrocarbons on a bifunctional Сo/SiO2+ZSM-5+Al2O3 catalyst. The studies were performed in the range of CO2 content from 0 to 60 vol. % at temperatures of 240 and 250 °C, pressure of 2.0 MPa and GHSV of 1000 h-1. It was shown that partial conversion of CO2 into synthetic hydrocarbons is possible on the bifunctional cobalt catalyst. Processing of carbon dioxide added to synthesis gas occurs in the range of CO2 concentrations of 20-40 vol. %. The maximum degree of CO2 conversion was 5.3 % at 240 °C and 20 vol. % CO2 in gas. It has been established that the addition of CO2 to synthesis gas leads to an increase in selectivity for C5+ hydrocarbons and the amount of isomeric hydrocarbons in the synthesis products, which contribute to the improvement of the characteristics of motor fuel, the octane number of the gasoline fraction and the pour point of the diesel fraction.
About the Authors
G. B. NarochnyRussian Federation
I. N. Zubkov
Russian Federation
O. P. Papeta
Russian Federation
E. A. Bozhenko
Russian Federation
A. P. Savost'yanov
Russian Federation
R. E. Yakovenko
Russian Federation
References
1. Peters G.P., Andrew R.M., Canadell J.G., Friedlingstein P., Jackson R.B., Korsbakken J.I., Quéré C.L., Peregon A. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies // Nature Climate Change. 2020. V. 10. № 1. Р. 3-6. DOI: 10.1038/s41558-019-0659-6
2. Pachauri R.K., Allen M.R., Barros V.R., Broome J., Cramer W., Christ R., Church J.A., Clarke L., Dahe Q., Dasgupta P., Dubash N.K., Edenhofer O., Elgizouli I., Field, C.B., Forster P., Friedlingstein P., Fuglestvedt J., Gomez-Echeverri L., Hallegatte S., Hegerl G., Howden M., Jiang K., Jimenez Cisneroz B., Kattsov V., Lee H., Mach K.J., Marotzke J., Mastrandrea M. D., Meyer L., Minx J., Mulugetta Y., O'Brien K., Oppenheimer M., Pereira J.J., Pichs-Madruga R., Plattner G.K., Pörtner Hans-Otto, Power S.B., Preston B., Ravindranath N.H., Reisinger A., Riahi K., Rusticucci M., Scholes R., Seyboth K., Sokona Y., Stavins R., Stocker T.F., Tschakert P., van Vuuren, D., Ypserle J.P. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland, IPCC, 151 p.
3. Tang Z., Zhang L., Gao R., Wang L., Li X., Zhang C. Efficient Utilization of Carbon Dioxide in Power-to-Gas and Power-to-Liquid Processes: A Vital Path to Carbon Neutrality // Processes. 2023. V. 11. № 7. P. 1898. DOI: 10.3390/pr11071898
4. König D.H., Baucks N., Dietrich R.U., Wörner A. Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2 // Energy. 2015. V. 91. Р. 833-841. DOI: 10.1016/j.energy.2015.08.099
5. Rafiee A., Panahi M., Khalilpour K.R. CO2 utilization through integration of post-combustion carbon capture process with Fischer-Tropsch gas-to-liquid (GTL) processes // Journal of CO2 Utilization. 2017. V. 18. P. 98-106. DOI: 10.1016/j.jcou.2017.01.016
6. Ra E.C., Kim K.Y., Kim E.H., Lee H., An K., Lee J.S. Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives // ACS Catalysis. 2020. V. 10. № 19. P. 11318-11345. DOI: 10.1021/acscatal.0c02930
7. Lin T., An Y., Yu F., Gong K., Yu H., Wang C., Sun Y., Zhong L. Advances in selectivity control for Fischer–Tropsch synthesis to fuels and chemicals with high carbon efficiency // ACS Catalysis. 2022. V. 12. № 19. P. 12092-12112. DOI: 10.1021/acscatal.2c03404
8. Saeidi S., Najari S., Hessel V., Wilson K., Keil F.J., Concepción P., S.L. Suib. Rodrigues A.E. Recent advances in CO2 hydrogenation to value-added products – Current challenges and future directions // Progress in Energy and Combustion Science. 2021. V. 85. P. 100905. DOI: 10.1016/j.pecs.2021.100905
9. Sakakura T., Choi J.C., Yasuda H. Transformation of carbon dioxide // Chemical reviews. 2007. V. 107. № 6. P. 2365-2387. DOI: 10.1021/cr068357u
10. Kamkeng A.D.N., Wang M. Technical analysis of the modified Fischer-Tropsch synthesis process for direct CO2 conversion into gasoline fuel: Performance improvement via ex-situ water removal // Chemical Engineering Journal. 2023. V. 462. P. 142048. DOI: 10.1016/j.cej.2023.142048
11. Gao P., Li S., Bu X., Dang S., Liu Z., Wang H., Zhong L., Qiu M., Yang C., Cai J., Wei W., Sun Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst // Nature chemistry. 2017. V. 9. № 10. Р. 1019-1024. DOI: 10.1038/nchem.2794
12. He Z., Cui M., Qian Q., Zhang J., Liu H., Han B. Synthesis of liquid fuel via direct hydrogenation of CO2 // Proceedings of the National Academy of Sciences. 2019. V. 116. № 26. P. 12654-12659. DOI: 10.1073/pnas.1821231116
13. Gao P., Zhang L., Li S., Zhou Z., Sun Y. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels // ACS Central Science. 2020. V. 6. № 10. P. 1657-1670.
14. Yakovenko R.E., Zubkov I.N., Savost’yanov A.P., Soromotin V.N., Krasnyakova T.V., Papeta O.P., Mitchenko S.A. Hybrid Catalyst for the Selective Synthesis of Fuel Range Hydrocarbons by the Fischer–Tropsch Method // Kinetics and Catalysis. 2021. V. 62. P. 172-180. DOI: 10.1134/S0023158421010122
15. Have I. C. et al. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation //Nature Communications. – 2022. – Т. 13. – №. 1. – С. 324. https://doi.org/10.1038/s41467-022-27981-x
16. Yakovenko R.E., Savost'yanov A.P., Narochniy G.B., Soromotin V.N., Zubkov I.N., Papeta O.P., Svetogorov R.D., Mitchenko S.A. Preliminary evaluation of a commercially viable Co-based hybrid catalyst system in Fischer-Tropsch synthesis combined with hydroprocessing // Catalysis Science & Technology. 2020. V. 10. № 22. Р. 7613-7629. DOI: 10.1039/D0CY00975J
17. Нарочный Г.Б., Зубков И.Н., Савостьянов А.П., Аллагузин И.Х., Лавренов С.А., Яковенко Р.Е. Бифункциональный кобальтовый катализатор для синтеза низкозастывающего дизельного топлива методом Фишера–Тропша – от разработки к внедрению. Часть 3. Опыт промышленной реализации технологии приготовления // Катализ в промышленности. 2024. V. 24. № 1. C. 34-43. DOI: 10.18412/1816-0387-2024-1-34-43
18. Yakovenko R.E., Narochnyi G.B. Zubkov I.N., Bozhenko E.A., Kataria Y.V, Svetogorov R.D., Savost’yanov A.P. Selective Synthesis of a Gasoline Fraction from CO and H2 on a Co-SiO2/ZSM-5/Al2O3 Catalyst // Catalysts. 2023. V. 139(9). P.1314. DOI: 10.3390/catal13091314
19. Хаджиев С.Н., Магомедова М.В., Пересыпкина Е.Г. Выбор схемного решения GTL-процесса для технологии ИНХС РАН // Нефтехимия. 2016. Т. 56. № 6. С. 567-577. DOI: 10.7868/S0028242116060095
20. Savost’yanov A.P., Narochnyi G.B., Yakovenko R.E., Mitchenko S.A., Zubkov I.N. Enhancement of the Fischer–Tropsch process for producing long-chain hydrocarbons on a cobalt–alumina–silica gel catalyst // Petroleum Chemistry. 2018. V. 58. P. 76-84. DOI: 10.1134/S0965544118010139
21. Ahmad E., Upadhyayula S., Pant K.K. Biomass-derived CO2 rich syngas conversion to higher hydrocarbon via Fischer-Tropsch process over Fe–Co bimetallic catalyst // International Journal of Hydrogen Energy. 2019. V. 44. № 51. P. 27741-27748.
Review
For citations:
Narochny G.B., Zubkov I.N., Papeta O.P., Bozhenko E.A., Savost'yanov A.P., Yakovenko R.E. Effect of CO2 content in synthesis gas on combined synthesis and hydrofining of hydrocarbons on Сo/SiO2+ZSM-5+Al2O3 catalyst. Kataliz v promyshlennosti. 2025;25(4):11-18. (In Russ.) https://doi.org/10.18412/1816-0387-2025-4-11-18