

Fischer-Tropsch synthesis catalysts based on granular, binder-free zeolites with a hierarchical porous structure
https://doi.org/10.18412/1816-0387-2025-4-19-30
Abstract
The results of studies of the Fischer-Tropsch synthesis on cobalt catalysts prepared on the basis of granular zeolites HZSM-5, HMOR, HY with a hierarchical porous structure are presented. Physicochemical and catalytic properties were studied for samples with cobalt contents of 6 and 12 wt. %. The phase composition of the catalysts and the structural characteristics of the active component, as well as the nature of cobalt reduction, were determined. The activity and selectivity parameters of the catalysts were studied in a fixed-bed reactor in continuous mode at a pressure of 2.0 MPa, a gas space velocity of 1000 h–1, and a temperature of 240-250 °C. It has been established that, depending on the type of zeolite used and the cobalt content, the active phase of the catalyst consists of crystals of different sizes, which, in turn, affects the reduction temperature, activity and selectivity in relation to the fuel fractions of the resulting synthesis products. Samples based on granulated zeolite HMORh are characterized by maximum activity and productivity; catalysts based on granulated zeolite HYh demonstrate the greatest stability. The diesel fraction of products obtained from samples 6Co/HZSM-5h and 12Co/HMORh has the best low-temperature characteristics.
About the Authors
S. I. SulimaRussian Federation
I. N. Zubkov
Russian Federation
O. S. Travkina
Russian Federation
A. Kh. Ishkildina
Russian Federation
R. Z. Kuvatova
Russian Federation
O. P. Papeta
Russian Federation
R. E. Yakovenko
Russian Federation
References
1. Marion, M.-C., Hugues, F. // Stud Surf Sci Catal. Vol. 167, 2007, P. 91-96. http://dx.doi.org/10.1016/S0167-2991(07)80114-5.
2. Iglesias Gonzalez, M., Kraushaar-Czarnetzki, B., Schaub, G. // Biomass Convers. Biorefin. Vol. 1, 4, 2011, P. 229-243. https://doi.org/10.1007/s13399-011-0022-2.
3. Kang, S.H., Ryu, J.H., Kin, J.H., Sai Prasad, P.S., Bea, J.W., Cheon, J.Y., Jun, K.W. // Catal. Let. 2011. V.141. P. 1464-1471. http://dx.doi.org/10.1007/ s10562-011-0626-y.
4. Liu, Z.W., Li, X., Asami, K. and Fujimoto, K. // Fuel Process. Technol 2007. V.88. P. 165-170. http://dx.doi.org/10.1016/j.fuproc. 2006.02.009.
5. Сулима С.И., Бакун В.Г., Чистякова Н.С., Ларина М.В., Яковенко Р.Е., Савостьянов А.П. // Нефтехимия. 2021. Т. 61. № 6. С. 760-775. DOI: 10.31857/S0028242121060022.
6. Dong Z, Zhang H, Whidden T, Zheng Y, Zhao J. // Can. J. Chem. Eng. 2017. V. 95, P. 1537-1543. https://doi.org/10.1002/cjce.22812.
7. Сулима С.И., Бакун В.Г., Яковенко Р.Е., Шабельская Н.П., Салиев А.Н., Нарочный Г.Б., Савостьянов А.П. // Кинетика и катализ. 2018. Т. 59. № 2. С. 240-250. DOI: 10.7868/S0453881118020132.
8. Dry, M.E. // Catal. Today. 2002. V.71. P. 227-241. http://dx.doi.org/10.1016/S0920-5861(01)00453-9.
9. De Klerk A. // Energy Fuels. 2007. Vol. 21. No. 6. pp. 3084-3089. http://dx.doi.org/10.1021/ef700246k.
10. Halmenschlager C. M., Brar M., Apan I. T., De Klerk A. // Ind. Eng. Chem. Res. 2016. Vol. 55. No. 51. pp. 13020-13031. http://dx.doi.org/10.1021/ acs.iecr.6b03861.
11. Adeleke A.A., Liu X., Lu X., Moyo M. Hildebrandt D. // Rev. Chem. Eng. Vol. 36, no. 4, 2020, pp. 437-457. https://doi.org/10.1515/revce-2018-0012.
12. Kibby C., Jothimurugesan K., Das T., Lacheen H.S., Rea T., Saxton R.J. // Catal Today. 2103; 215: 131–141.10.1016/j.cattod.2013.03.009.
13. Astruc D., Lu F., Aranzaes J.R. // Angew. Chemie Int. Ed. 44 (2005) 7852–7872, https://doi.org/10.1002/anie.200500766.
14. Flores С., Batalha N., Ordomsky V.V., Zholobenko V.L., Baazizd W., Marcilio N.R., Khodakov A.Y. // ChemCatChem, 2017. Vol. 10. No. 10. pp. 2291-2299. http://dx.doi.org/10.1002/cctc.201701848.
15. Asalieva E.Y., Kul’chakovskaya E.V., Sineva L.V., Mordkovich V.Z. // Pet. Chem. 2020. V. 60. № 1. P. 69-74. DOI: 10.1134/S0965544120010028.
16. Yakovenko R.E., Zubkov I.N., Bakun V.G. Agliullin M. R., Saliev A. N., Savost’yanov A. P. // Catal. Ind. 2021. V. 13, 230–238. https://doi.org/10.1134/S2070050421030120.
17. Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Zubkov I. N., Nepomnyashchikh E.V. // Pet. Chem. 2020. V. 60. P. 577–584. https://doi.org/10.1134/S0965544120050102.
18. Savost'yanov A.P., Yakovenko R.E., Saliev A.N., Narochnyi G.B., Mitchenko S.A., Zubkov I.N., Soromotin V.N., Kirsanov V.A. // Pet. Chem. 2018. Т. 58. № 5. С. 434-443. https://doi.org/10.1134/S0965544118030143.
19. Травкина О.С., Куватова Р.З., Павлова И.Н., Канаан А.Р., Ахметов А.Ф., Кутепов Б.И. //Нефтехимия. 2016. Т. 56. № 1. С. 41-45. DOI: 10.7868/S0028242115060180.
20. Шавалеев Д.А., Павлов М.Л., Басимова Р.А., Травкина О.С., Павлова И.Н., Габдураманова Л.Ф., Алехина И.Е. // Вестник Башкирского университета. 2020. Т. 25. № 1. С. 93-98. DOI: 10.33184/bulletin-bsu-2020.1.15.
21. Пятницкий И.В. Аналитическая химия кобальта. М.: Наука, 1965 г.
22. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release 2012. https://www.icdd.com/pdf-2.
23. Young R.A. The Rietveld Method. Oxford University Press, 1995. 298 р.
24. Xu D., Li W., Duan H., Ge Q., Xu H. // Catal. Lett. 2005. V. 102.№ 3-4. P. 229-235. DOI: 10.1007/s10562-005-5861-7.
25. Schanke D., Vada S., Blekkan E.A., Hilmen A.M., Hoff A., Holmen A. // J. Catal. 1995. V. 156. Р. 85–95. https://doi.org/10.1006/jcat.1995.1234.
26. Pardo-Tarifa F., Cabrera S., Sanchez-Dominguez M.,Boutonnet M. // Int. J. Hydrogen Energy. 2017. V. 42. P. 9754–9765. https://doi.org/10.1016/j.ijhydene.2017.01.056.
27. Jermwongratanachai T., Jacobs G., Shafer W.D., Ma W., Pendyala V. R. R., Davis B. H., Kitiyanan B., Khalid S., Cronauer D. C., Kropf A. J., Marshall C. L. // Top. Catal. 57, 479–490 (2014). https://doi.org/10.1007/s11244-013-0204-1.
28. Ahmad N., Hussain S.T., Muhammad B., Ali N., Abbas S.M., Ali Z. // Progress in Natural Science: Materials International. V. 23, Is. 4, 2013, P. 374-381.
29. Синева Л.В., Асалиева Е.Ю., Мордкович В.З. Роль цеолита в синтезе Фишера-Тропша на кобальт-цеолитных катализаторах. // Успехи химии. 2015. Т. 84. № 11. С. 1176-1189.
30. Yakovenko R. E., Bakun V. G., Agliullin M. R., Sulima S. I., Zubkov I. N., Pyatikonova V. V., Bozhenko E. A., Savost’yanov A. P. // Pet. Chem. 2022.V. 62. P. 950–961. https://doi.org/10.1134/S0965544122070209.
31. Yakovenko R.E., Saliev A.N., Zubkov I.N., Soromotin V.N., Narochnyi G.B., Savost'yanov A.P. // Izvestiya vuzov. Severo-Kavkazskiy region. Technical science. 2018. No. 1. P. 96-104. DOI: 10.17213/0321-2653-2018-1-96-104.
32. Akhmedov V.M., Al-Khowaiter S.H. // Catalysis Reviews, 2007. 49:33–139, DOI: 10.1080/01614940601128427.
33. Соромотин В.Н., Яковенко Р.Е., Медведев А.В., Митченко С.А. // Кинетика и катализ. 2021. Т. 62. № 6. С. 811-820. DOI: 10.31857/S0453881121060174.
34. Martínez A., Rollán J., Arribas M.A., Cerqueira H.S., Costa A.F., S.-Aguiar E.F. // Journal of Catalysis, 249. 2007. 162–173. https://doi.org/10.1016/j.jcat.2007.04.012.
35. Хайруллина З.Р., Аглиуллин М.Р., Алехина И.Е., Кутепов Б.И. // Вестник Башкирского университета. 2020. Т. 25. С. 495-505. DOI: 10.33184/bulletin-bsu-2020.3.6
Review
For citations:
Sulima S.I., Zubkov I.N., Travkina O.S., Ishkildina A.Kh., Kuvatova R.Z., Papeta O.P., Yakovenko R.E. Fischer-Tropsch synthesis catalysts based on granular, binder-free zeolites with a hierarchical porous structure. Kataliz v promyshlennosti. 2025;25(4):19-30. (In Russ.) https://doi.org/10.18412/1816-0387-2025-4-19-30