Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Composition of emissions of sulfur and nitrogen oxides depending on the depth of hydrotreatment of FCC feedstock

https://doi.org/10.18412/1816-0387-2025-4-31-40

Abstract

The study of the effect of the composition of the feedstock cracking on its conversion, distribution of cracking products and composition of regeneration gases. Four types of feedstocks were studied: hydrocracking residue, hydrotreated vacuum gas oil, non-hydrotreated vacuum gas oil and mixed feedstock containing 20 wt. % of fuel oil and 80 wt. % of non-hydrotreated vacuum gas oil. Indole, quinoline and benzothiophene were additionally introduced into each type of feedstock, as well as benzothiophene and indole simultaneously. It was found that with an increase in the fractional composition of the feedstock, a decrease in conversion and the yield of cracking products (gasoline and light olefins) occurs. An increase in the concentration of sulfur and nitrogen oxides in the regeneration gases is also observed.

About the Authors

E. O. Kobzar
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Omsk
Russian Federation


T. V. Bobkova
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Omsk
Russian Federation


K. I. Dmitriev
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Omsk
Russian Federation


O. V. Potapenko
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Omsk
Russian Federation


References

1. Letzsch W. Fluid Catalytic cracking (FCC) in petroleum refining // Handbook of Petroleum Processing. 2015. V. 1. P. 261–316

2. Хаджиев С.Н., Капустин В.М., Максимов А.Л., Чернышева Е.А., Кадиев Х.М., Герзелиев И.М., Колесниченко Н.В. // Нефтепереработка и нефтехимия. 2014. № 9. С. 3–10.

3. Suganuma S., Katada N. // Fuel Process. Technol. 2020. V. 208. P. 106518. https://doi.org/10.1016/j.fuproc.2020.106518

4. Капустин В.М., Гуреев А.А. Технология переработки нефти. Часть 2. Деструктивные процессы. М.: КолосС, 2007. 334 с

5. Oloruntoba A., Zhang Y., Hsu C.S. // Energies. 2022. V. 15. № 6. P. 2061. https://doi.org/10.3390/en15062061

6. Jaimes L., Tonetto G.M., Ferreira M.L., de Lasa H. Int. J. Chem. Reac. Eng. 2008. V. 6. № 1. 69 р. https://doi.org/10.2202/1542-6580.1667

7. Nadeina K.A., Potapenko O.V., Kazakov M.O., Doronin V.P., Saiko A.V., Sorokina T.P., Kleimenov A.V., Klimov O.V., Noskov A.S. // Catalysis Today. 2021. V. 378. Р. 2–9. https://doi.org/10.1016/j.cattod.2021.04.014

8. Haruna A., Merican Z.M.A., Musa S.G., Abubakar S. // Fuel. 2022. V. 329. Р. 125370. https://doi.org/10.1016/j.fuel.2022.125370

9. Каминский Э.Ф., Хавкин В.А. Глубокая переработка нефти: технологический и экологический аспекты. М.: Техника, 2001. 384 с

10. Нефедов Б.К., Радченко Е.Д., Алиев Р.Р. Катализаторы процессов углубленной переработки нефти. М.: Химия, 1992. 265 с

11. Zhou J., Zhao J., Zhang J., Zhang T., Ye M., Liu, Z. // Chin. J. Catal. 2020. V. 41. № 7. P. 1048–1061. https://doi.org/10.1016/S1872-2067(20)63552-5

12. Zhang T., Lin Q., Xue Z., Munson R., Magneschi G. // Energy Procedia. 2017. V. 114. P. 5869–5873. https://doi.org/10.1016/j.egypro.2017.03.1724

13. Maholland M.K. // Petroleum Technology Quarterly. 2004. V. 9. № 3. P. 71–75.

14. Потапенко О.B., Бобкова Т.В., Дмитриев К.И., Кобзарь Е.О., Доронин В.П., Сорокина Т.П., Юртаева А.С., Ковеза, В.А. // Нефтехимия. 2024. Т. 64 № 1. С. 5–18. https://doi.org/10.31857/S0028242124010011

15. Bobkova T.V., Dmitriev K.I., Potapenko O.V., Doronin V.P., Sorokina T.P. // Kataliz v promyshlennosti. 2022. V. 22. № 4. Р. 58–65. https://doi.org/10.18412/1816-0387-2022-4-58-65

16. Потапенко О. В., Доронин В. П., Сорокина Т. П. // Нефтехимия. 2012. Т. 52. № 1. С. 60-65.

17. Plekhova K.S., Yurtaeva A.S., Gulyaeva T.I., Potapenko O.V., Sorokina T.P., Doronin V.P. // AIP Publishing. 2020. V. 2301. P. 040008. https://doi.org/10.1063/5.0032913

18. Бобкова Т.В., Доронин В.П., Потапенко О.В., Сорокина Т.П., Островский Н.М. // Катализ в промышленности. 2014. Т. 2. С. 40–45.

19. Bobkova T.V., Potapenko O.V., Doronin V.P., Sorokina T.P., Gulyaeva T.I. // AIP Publishing. 2018. V. 2007. № 1. Р. 020003. https://doi.org/10.1063/1.5051842

20. Bobkova T.V., Potapenko O.V., Doronin V.P., Sorokina T.P. // Fuel Process. Technol. 2018. V. 172. P. 172–178. https://doi.org/10.1016/j.fuproc.2017.12.020

21. Babich I.V., Seshan K., Lefferts L //Appl. Catal. B. 2005. Т. 59. № 3-4. P. 205–211. https://doi.org/10.1016/j.apcatb.2005.02.008

22. Bobkova T.V., Dmitriev K.I., Potapenko O.V., Doronin V.P., Sorokina T.P. // Catal. Ind. 2023. V. 15. № 2. P. 175–181. https://doi.org/10.1134/s207005042302002

23. Dmitriev K.I., Potapenko O.V., Bobkova T.V., Sorokina T.P., Doronin V.P. // AIP Conf. Proceed. 2019. V. 2143. № 1. P. 020018. https://doi.org/10.1063/1.5122917


Review

For citations:


Kobzar E.O., Bobkova T.V., Dmitriev K.I., Potapenko O.V. Composition of emissions of sulfur and nitrogen oxides depending on the depth of hydrotreatment of FCC feedstock. Kataliz v promyshlennosti. 2025;25(4):31-40. (In Russ.) https://doi.org/10.18412/1816-0387-2025-4-31-40

Views: 15


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)