Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Structured catalysts for the conversion of gaseous hydrocarbons - from laboratory studies to industrial applications

https://doi.org/10.18412/1816-0387-2025-4-41-48

Abstract

The paper demonstrates the possibility of industrial-scale application of the developed catalytic structured blocks 0.24 wt. % Rh/Ce0.75Zr0.2Gd0.05 /η-Al2O3/FeCrAl for use in reformers for partial oxidation of propane-butane mixtures to produce synthesis gas and 0.06 % Pt/Ce0.75Zr0.25 O2/η-Al2O3/FeCrAl for use in anode gas utilization systems (afterburners). The results of testing the catalytic blocks in the corresponding reactions are presented.

About the Authors

Z. A. Fedorova
Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Russian Federation


E. A. Levchenko
Limited Liability Company "Research Center "TOPAZ", Moscow
Russian Federation


V. N. Rogozhnikov
Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Russian Federation


D. I. Potemkin
Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Russian Federation


A. V. Sivak
Limited Liability Company "Research Center "TOPAZ", Moscow
Russian Federation


P. V. Snytnikov
Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Russian Federation


References

1. Song C. // Catal. Today. 2006. Т. 115. С. 2–32. https://doi.org/10.1016/j.cattod.2006.02.029.

2. Arutyunov V. // Acad. Lett. 2021. https://doi.org/10.20935/AL3692.

3. Арутюнов В.С. // ЭКО. 2022. Т.52. С. 51–66. https://doi.org/10.30680/ECO0131-7652-2022-7-51-66.

4. Arutyunov V.S., Lisichkin G. V.// Russ. Chem. Rev. 2017. V.86. Р. 777–804. https://doi.org/10.1070/RCR4723.

5. Adib R., Renewables 2022 global status report // 2021.

6. Kötter E., Schneider L., Sehnke F., Ohnmeiss K., Schröer R. // J. Energy Storage. 2016. V.5. P. 113–119. https://doi.org/10.1016/j.est.2015.11.012.

7. Pinsky R., Sabharwall P., Hartvigsen J., O’Brien J.// Prog. Nucl. Energy. 2020. V.123. P. 103317. https://doi.org/10.1016/j.pnucene.2020.103317.

8. Zhang B., Zhang S.-X., Yao R., Wu Y.-H., Qiu J.-S. // J. Electron. Sci. Technol. 2021. V.19. P. 100080. https://doi.org/10.1016/j.jnlest.2021.100080.

9. Макарян И.А., Седов И.В., Никитин А.В., Арутюнов В.С. // Переработка Нефти и Газа. 2020. Т.1. С. 50–68.

10. Chen L., Qi Z., Zhang S., Su J., Somorjai G.A. // Catalysts. 2020. V. 858. https://doi.org/10.3390/catal10080858.

11. Lamb J.J., Hillestad M., Rytter E., Bock R., Nordgård A.S.R., Lien K.M., Burheim O.S., Pollet B.G. // Hydrog. Biomass Bioenergy. 2020. P. 21–53. https://doi.org/10.1016/B978-0-08-102629-8.00003-7.

12. Ni C., Yuan Z., Wang S., Li D., Zhang C., Li J., Wang S.// Int. J. Hydrogen Energy. 2015. P. 15491–15502. https://doi.org/10.1016/j.ijhydene.2015.09.067.

13. Shoynkhorova T.B., Rogozhnikov V.N., Ruban N.V., Shilov V.A., Potemkin D.I., Simonov P.A., Belyaev V.D., Snytnikov P.V., Sobyanin V.A. // Int. J. Hydrogen Energy. 2019. V.44. P. 9941–9948. https://doi.org/10.1016/j.ijhydene.2018.12.148.

14. Shilov V.A., Rogozhnikov V.N., Potemkin D.I., Belyaev V.D., Shashkov M.V., Sobyanin V.A., Snytnikov P.V. // Int. J. Hydrogen Energy. 2022. V.47. P. 11316–11325. https://doi.org/10.1016/j.ijhydene.2021.08.226.

15. Potemkin D.I., Rogozhnikov V.N., Ruban N.V., Shilov V.A., Simonov P.A., Shashkov M.V., Sobyanin V.A., Snytnikov P.V. // Int. J. Hydrogen Energy. 2020. V.45. P. 26197–26205. https://doi.org/10.1016/j.ijhydene.2020.01.076.

16. Алдошин С.М., Арутюнов В.С., Савченко В.И., Седов И.В., Никитин А.В., Фокин И.Г. // Химическая Физика. 2021. Т.40. С. 46–54. https://doi.org/10.31857/S0207401X21050034.

17. Арутюнов В.С., Никитин А.В., Стрекова Л.Н.,. Савченко В.И,. Седов И.В, Озерский А.В., Зимин Я.С. // Журнал Технической Физики. 2021. Т.91. С. 713-718. https://doi.org/10.21883/JTF.2021.05.50681.265-20.

18. Zyryanova M.M., Snytnikov P.V., Amosov Y.I., Kuzmin V.A., Kirillov V.A., Sobyanin V.A. // Chem. Eng. J. 2011. V.176–177. P.106–113. https://doi.org/10.1016/j.cej.2011.03.085.

19. Polman E.A., Der Kinderen J.M., Thuis F.M.A. // Catal. Today. 1999. V.47. P. 347–351. https://doi.org/10.1016/S0920-5861(98)00316-2.

20. Zanfir M., Gavriilidis A. // Chem. Eng. Sci. 2003. V.58. P. 3947–3960. https://doi.org/10.1016/S0009-2509(03)00279-3.

21. Kirillov V.A., Fadeev S.I., Kuzin N.A., Shigarov A.B. // Chem. Eng. J. 2007. V.134. P. 131–137. https://doi.org/10.1016/j.cej.2007.03.050.

22. Ismagilov Z.R., Pushkarev V.P., Podyacheva O.Y., Koryabkina N.A., Veringa H. // Chem. Eng. J. 2001. V.82. P. 355–360. https://doi.org/10.1016/S1385-8947(00)00349-1.

23. Seo Y.-S., Seo D.-J., Seo Y.-T., Yoon W.-L. // J. Power Sources. 2006. V.161. P. 1208–1216. https://doi.org/10.1016/j.jpowsour.2006.05.039.

24. Ghang T.G., Lee S.M., Ahn K.Y., Kim Y. // Int. J. Hydrogen Energy. 2012. V.37. P. 3234–3241. https://doi.org/10.1016/j.ijhydene.2011.11.076.

25. Holladay J.D., Wang Y., Jones E. // Chem. Rev. 2004. V.104. P. 4767–4790. https://doi.org/10.1021/cr020721b.

26. Engelbrecht N., Everson R.C., Bessarabov D., Kolb G. // Chem. Eng. Process. - Process Intensif. 2020. V.157. P.108164. https://doi.org/10.1016/j.cep.2020.108164.

27. Ismagilov I., Michurin E., Sukhova O., Tsykoza L., Matus E., Kerzhentsev M., Ismagilov Z., Zagoruiko A., Rebrov E., Decroon M. // Chem. Eng. J. 2008. V.135. P. S57–S65. https://doi.org/10.1016/j.cej.2007.07.036.

28. Ryi S.-K., Park J.-S., Choi S.-H., Cho S.-H., Kim S.-H. // Chem. Eng. J. 2005. V.113. P. 47–53. https://doi.org/10.1016/j.cej.2005.08.008.

29. Vorontsov V.A., Gribovskiy A.G., Makarshin L.L., Andreev D.V., Ylianitsky V.Y., Parmon V.N. // Int. J. Hydrogen Energy. 2014. V. 39. P. 325–330. https://doi.org/10.1016/j.ijhydene.2013.10.040.

30. Makarshin L.L., Sadykov V.A., Andreev D.V., Gribovskii A.G., Privezentsev V.V., Parmon V.N. // Fuel Process. Technol. 2015. V.131. P. 21–28. https://doi.org/10.1016/j.fuproc.2014.10.031.

31. Snytnikov P.V., Potemkin D.I., Rebrov E.V., Sobyanin V.A., Hessel V., Schouten J.C. // Chem. Eng. J. 2010. V.160. P. 923–929. https://doi.org/10.1016/j.cej.2009.12.019.

32. Snytnikov P.V., Popova M.M., Men Y., Rebrov E.V., Kolb G., Hessel V., Schouten J.C., Sobyanin V.A. // Appl. Catal. A Gen. 2008. V. 350. P. 53–62. https://doi.org/10.1016/j.apcata.2008.07.036.

33. Tikhov S.F., Bespalko Y.N., Sadykov V.A., Salanov A.N., Reshetnikov S.I. // Combust. Explos. Shock Waves. 2016. V.52. P. 535–543. https://doi.org/10.1134/S001050821605004X.

34. Kirillov V.A., Fedorova Z.A., Danilova M.M., Zaikovskii V.I., Kuzin N.A., Kuzmin V.A., Krieger T.A., Mescheryakov V.D. // Appl. Catal. A Gen. 2011. V.401. P. 170–175. https://doi.org/10.1016/j.apcata.2011.05.018.

35. Kirillov V.A., Shigarov A.B., Kuzin N.A., Kireenkov V. V., Braiko A.S., Burtsev N. V. // Katal. v Promyshlennosti. 2019. V.19. P. 351–363. https://doi.org/10.18412/1816-0387-2019-5-351-363.

36. Tikhov S.F., Sadykov V.A., Valeev K.R., Salanov A.N., Cherepanova S. V., Bespalko Y.N.,. Ramanenkau V.E, Piatsiushyk Y.Y., Dimov S. V. // Catal. Today. 2015. V.246. P. 232–238. https://doi.org/10.1016/j.cattod.2014.12.009.

37. Samoilov A. V., Kirillov V.A., Shigarov A.B., Braiko A.S., Potemkin D.I., Shoinkhorova T.B., Snytnikov P. V., Uskov S.I., Pechenkin A.A., Belyaev V.D., Sobyanin V.A. //Katal. v Promyshlennosti. 2018. V.18. P. 41–47. https://doi.org/10.18412/1816-0387-2018-3-41-47.

38. Hernández-Garrido J.C., Gaona D., Gómez D.M., Gatica J.M., Vidal H., Sanz O., Rebled J.M., Peiró F., Calvino J.J. // Catal. Today. 2015. V.253. P. 190–198. https://doi.org/10.1016/j.cattod.2015.01.035.

39. Reichelt E., Heddrich M.P., Jahn M., Michaelis A. // Appl. Catal. A Gen. 2014. V.476. P. 78–90. https://doi.org/10.1016/j.apcata.2014.02.021.

40. Escalante Y., Galetti A.E., Gómez M.F., Furlong O.J., Nazzarro M.S., Barroso M.N., Abello M.C. // Int. J. Hydrogen Energy. 2020. V.45. P. 20956–20969. https://doi.org/10.1016/j.ijhydene.2020.05.188.

41. Khalighi R., Bahadoran F., Panjeshahi M.H., Zamaniyan A., Tahouni N. // Microporous Mesoporous Mater. 2020. V.305. P.110371. https://doi.org/10.1016/j.micromeso.2020.110371.

42. Porsin A. V., Kulikov A. V., Rogozhnikov V.N., Serkova A.N., Salanov A.N., Shefer K.I. // Catal. Today. 2016. V.273. P. 213–220. https://doi.org/10.1016/j.cattod.2016.03.033.

43. Rogozhnikov V.N., Potemkin D.I., Pakharukova V.P., Belyaev V.D., Nedolivko V.V., Glotov A.P., Sobyanin V.A., Snytnikov P.V. // Int. J. Hydrogen Energy. 2021. V.46. P. 35853–35865. https://doi.org/10.1016/j.ijhydene.2021.03.164.

44. Rogozhnikov V.N., Snytnikov P.V., Salanov A.N., Kulikov A.V., Ruban N.V., Potemkin D.I., Sobyanin V.A., Kharton V.V. // Mater. Lett. 2019. V.236. P. 316–319. https://doi.org/10.1016/j.matlet.2018.10.133.

45. Ruban N.V., Rogozhnikov V.N., Zazhigalov S.V., Zagoruiko A.N., Emelyanov V.A., Snytnikov P.V., Sobyanin V.A., Potemkin D.I. // Materials (Basel). 2022. V.15. P. 7336. https://doi.org/10.3390/ma15207336.

46. Ruban N.V., Rogozhnikov V.N., Stonkus O.A., Emelyanov V.A., Pakharukova V.P., Svintsitskiy D.A., Zazhigalov S.V., Zagoruiko A.N., Snytnikov P.V., Sobyanin V.A., Potemkin D.I. // Fuel. 2023. V.352. P. 128973. https://doi.org/10.1016/j.fuel.2023.128973.

47. Badmaev S.D., Akhmetov N.O., Belyaev V.D., Kulikov A.V., Pechenkin A.A., Potemkin D.I., Konishcheva M.V., Rogozhnikov V.N., Snytnikov P.V., Sobyanin V.A. // Int. J. Hydrogen Energy. 2020. V.45. P. 26188–26196. https://doi.org/10.1016/j.ijhydene.2020.01.101.

48. Shilov V.A., Rogozhnikov V.N., Potemkin D.I., Snytnikov P.V. Synthesis and Study of the Catalytic Properties of a Structured Rh-Containing Catalyst for the Conversion of Diesel Fuel into Synthesis Gas, Kinet. Catal. 64 (2023) 96–104. https://doi.org/10.1134/S002315842301007X.

49. Zazhigalov S.V., Shilov V.A., Rogozhnikov V.N., Potemkin D.I., Sobyanin V.A., Zagoruiko A.N., Snytnikov P.V. // Catal. Today. 2021. V.378. P. 240–248. https://doi.org/10.1016/j.cattod.2020.11.015.

50. Shilov V.A., Rogozhnikov V.N., Ruban N.V., Potemkin D.I., Simonov P.A., Shashkov M.V., Sobyanin V.A., Snytnikov P.V. // Catal. Today. 2021. V.379. P. 42–49. https://doi.org/10.1016/j.cattod.2020.06.080.

51. Ruban N.V., Potemkin D.I., Rogozhnikov V.N., Shefer K.I., Snytnikov P.V., Sobyanin V.A. // Int. J. Hydrogen Energy. 2021. V.46. P. 35840–35852. https://doi.org/10.1016/j.ijhydene.2021.01.183.

52. Rogozhnikov V.N., Salanov A.N., Potemkin D.I., Glotov A.P., Boev S.V., Snytnikov P.V. // Mater. Lett. 2021. V.283. P.128855. https://doi.org/10.1016/j.matlet.2020.128855.

53. Konishcheva M. V., Svintsitskiy D.A., Potemkin D.I., Rogozhnikov V.N., Sobyanin V.A., Snytnikov P.V. // Chemistry Select. 2020. V.5. P. 1228–1234. https://doi.org/10.1002/slct.201904630.

54. Konishcheva M.V., Snytnikov P.V., Rogozhnikov V.N., Salanov A.N., Potemkin D.I., Sobyanin V.A. // Catal. Commun. 2019. V.118. P. 25–29. https://doi.org/10.1016/j.catcom.2018.09.011.

55. Gorlova A.M., Panafidin M.A., Shilov V.A., Pakharukova V.P., Snytnikov P.V., Potemkin D.I. // Int. J. Hydrogen Energy. 2023. V.48. P.12015–12023. https://doi.org/10.1016/j.ijhydene.2022.06.028.

56. Rogozhnikov V.N., Salanov A.N., Potemkin D.I., Pakharukova V.P., Stonkus O.A., Glotov A.P., Boev S.S., Zasypalov G.O., Melnikov D.P., Snytnikov P.V. // Mater. Lett. 2022. V.310. P. 131481. https://doi.org/10.1016/j.matlet.2021.131481.

57. Shoynkhorova T.B., Simonov P.A., Potemkin D.I., Snytnikov P.V., Belyaev V.D., Ishchenko A.V., Svintsitskiy D.A., Sobyanin V.A. // Appl. Catal. B Environ. 2018. V.237. P. 237–244. https://doi.org/10.1016/j.apcatb.2018.06.003.


Review

For citations:


Fedorova Z.A., Levchenko E.A., Rogozhnikov V.N., Potemkin D.I., Sivak A.V., Snytnikov P.V. Structured catalysts for the conversion of gaseous hydrocarbons - from laboratory studies to industrial applications. Kataliz v promyshlennosti. 2025;25(4):41-48. (In Russ.) https://doi.org/10.18412/1816-0387-2025-4-41-48

Views: 19


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)