

Structured catalysts for the conversion of gaseous hydrocarbons - from laboratory studies to industrial applications
https://doi.org/10.18412/1816-0387-2025-4-41-48
Abstract
The paper demonstrates the possibility of industrial-scale application of the developed catalytic structured blocks 0.24 wt. % Rh/Ce0.75Zr0.2Gd0.05 /η-Al2O3/FeCrAl for use in reformers for partial oxidation of propane-butane mixtures to produce synthesis gas and 0.06 % Pt/Ce0.75Zr0.25 O2/η-Al2O3/FeCrAl for use in anode gas utilization systems (afterburners). The results of testing the catalytic blocks in the corresponding reactions are presented.
About the Authors
Z. A. FedorovaRussian Federation
E. A. Levchenko
Russian Federation
V. N. Rogozhnikov
Russian Federation
D. I. Potemkin
Russian Federation
A. V. Sivak
Russian Federation
P. V. Snytnikov
Russian Federation
References
1. Song C. // Catal. Today. 2006. Т. 115. С. 2–32. https://doi.org/10.1016/j.cattod.2006.02.029.
2. Arutyunov V. // Acad. Lett. 2021. https://doi.org/10.20935/AL3692.
3. Арутюнов В.С. // ЭКО. 2022. Т.52. С. 51–66. https://doi.org/10.30680/ECO0131-7652-2022-7-51-66.
4. Arutyunov V.S., Lisichkin G. V.// Russ. Chem. Rev. 2017. V.86. Р. 777–804. https://doi.org/10.1070/RCR4723.
5. Adib R., Renewables 2022 global status report // 2021.
6. Kötter E., Schneider L., Sehnke F., Ohnmeiss K., Schröer R. // J. Energy Storage. 2016. V.5. P. 113–119. https://doi.org/10.1016/j.est.2015.11.012.
7. Pinsky R., Sabharwall P., Hartvigsen J., O’Brien J.// Prog. Nucl. Energy. 2020. V.123. P. 103317. https://doi.org/10.1016/j.pnucene.2020.103317.
8. Zhang B., Zhang S.-X., Yao R., Wu Y.-H., Qiu J.-S. // J. Electron. Sci. Technol. 2021. V.19. P. 100080. https://doi.org/10.1016/j.jnlest.2021.100080.
9. Макарян И.А., Седов И.В., Никитин А.В., Арутюнов В.С. // Переработка Нефти и Газа. 2020. Т.1. С. 50–68.
10. Chen L., Qi Z., Zhang S., Su J., Somorjai G.A. // Catalysts. 2020. V. 858. https://doi.org/10.3390/catal10080858.
11. Lamb J.J., Hillestad M., Rytter E., Bock R., Nordgård A.S.R., Lien K.M., Burheim O.S., Pollet B.G. // Hydrog. Biomass Bioenergy. 2020. P. 21–53. https://doi.org/10.1016/B978-0-08-102629-8.00003-7.
12. Ni C., Yuan Z., Wang S., Li D., Zhang C., Li J., Wang S.// Int. J. Hydrogen Energy. 2015. P. 15491–15502. https://doi.org/10.1016/j.ijhydene.2015.09.067.
13. Shoynkhorova T.B., Rogozhnikov V.N., Ruban N.V., Shilov V.A., Potemkin D.I., Simonov P.A., Belyaev V.D., Snytnikov P.V., Sobyanin V.A. // Int. J. Hydrogen Energy. 2019. V.44. P. 9941–9948. https://doi.org/10.1016/j.ijhydene.2018.12.148.
14. Shilov V.A., Rogozhnikov V.N., Potemkin D.I., Belyaev V.D., Shashkov M.V., Sobyanin V.A., Snytnikov P.V. // Int. J. Hydrogen Energy. 2022. V.47. P. 11316–11325. https://doi.org/10.1016/j.ijhydene.2021.08.226.
15. Potemkin D.I., Rogozhnikov V.N., Ruban N.V., Shilov V.A., Simonov P.A., Shashkov M.V., Sobyanin V.A., Snytnikov P.V. // Int. J. Hydrogen Energy. 2020. V.45. P. 26197–26205. https://doi.org/10.1016/j.ijhydene.2020.01.076.
16. Алдошин С.М., Арутюнов В.С., Савченко В.И., Седов И.В., Никитин А.В., Фокин И.Г. // Химическая Физика. 2021. Т.40. С. 46–54. https://doi.org/10.31857/S0207401X21050034.
17. Арутюнов В.С., Никитин А.В., Стрекова Л.Н.,. Савченко В.И,. Седов И.В, Озерский А.В., Зимин Я.С. // Журнал Технической Физики. 2021. Т.91. С. 713-718. https://doi.org/10.21883/JTF.2021.05.50681.265-20.
18. Zyryanova M.M., Snytnikov P.V., Amosov Y.I., Kuzmin V.A., Kirillov V.A., Sobyanin V.A. // Chem. Eng. J. 2011. V.176–177. P.106–113. https://doi.org/10.1016/j.cej.2011.03.085.
19. Polman E.A., Der Kinderen J.M., Thuis F.M.A. // Catal. Today. 1999. V.47. P. 347–351. https://doi.org/10.1016/S0920-5861(98)00316-2.
20. Zanfir M., Gavriilidis A. // Chem. Eng. Sci. 2003. V.58. P. 3947–3960. https://doi.org/10.1016/S0009-2509(03)00279-3.
21. Kirillov V.A., Fadeev S.I., Kuzin N.A., Shigarov A.B. // Chem. Eng. J. 2007. V.134. P. 131–137. https://doi.org/10.1016/j.cej.2007.03.050.
22. Ismagilov Z.R., Pushkarev V.P., Podyacheva O.Y., Koryabkina N.A., Veringa H. // Chem. Eng. J. 2001. V.82. P. 355–360. https://doi.org/10.1016/S1385-8947(00)00349-1.
23. Seo Y.-S., Seo D.-J., Seo Y.-T., Yoon W.-L. // J. Power Sources. 2006. V.161. P. 1208–1216. https://doi.org/10.1016/j.jpowsour.2006.05.039.
24. Ghang T.G., Lee S.M., Ahn K.Y., Kim Y. // Int. J. Hydrogen Energy. 2012. V.37. P. 3234–3241. https://doi.org/10.1016/j.ijhydene.2011.11.076.
25. Holladay J.D., Wang Y., Jones E. // Chem. Rev. 2004. V.104. P. 4767–4790. https://doi.org/10.1021/cr020721b.
26. Engelbrecht N., Everson R.C., Bessarabov D., Kolb G. // Chem. Eng. Process. - Process Intensif. 2020. V.157. P.108164. https://doi.org/10.1016/j.cep.2020.108164.
27. Ismagilov I., Michurin E., Sukhova O., Tsykoza L., Matus E., Kerzhentsev M., Ismagilov Z., Zagoruiko A., Rebrov E., Decroon M. // Chem. Eng. J. 2008. V.135. P. S57–S65. https://doi.org/10.1016/j.cej.2007.07.036.
28. Ryi S.-K., Park J.-S., Choi S.-H., Cho S.-H., Kim S.-H. // Chem. Eng. J. 2005. V.113. P. 47–53. https://doi.org/10.1016/j.cej.2005.08.008.
29. Vorontsov V.A., Gribovskiy A.G., Makarshin L.L., Andreev D.V., Ylianitsky V.Y., Parmon V.N. // Int. J. Hydrogen Energy. 2014. V. 39. P. 325–330. https://doi.org/10.1016/j.ijhydene.2013.10.040.
30. Makarshin L.L., Sadykov V.A., Andreev D.V., Gribovskii A.G., Privezentsev V.V., Parmon V.N. // Fuel Process. Technol. 2015. V.131. P. 21–28. https://doi.org/10.1016/j.fuproc.2014.10.031.
31. Snytnikov P.V., Potemkin D.I., Rebrov E.V., Sobyanin V.A., Hessel V., Schouten J.C. // Chem. Eng. J. 2010. V.160. P. 923–929. https://doi.org/10.1016/j.cej.2009.12.019.
32. Snytnikov P.V., Popova M.M., Men Y., Rebrov E.V., Kolb G., Hessel V., Schouten J.C., Sobyanin V.A. // Appl. Catal. A Gen. 2008. V. 350. P. 53–62. https://doi.org/10.1016/j.apcata.2008.07.036.
33. Tikhov S.F., Bespalko Y.N., Sadykov V.A., Salanov A.N., Reshetnikov S.I. // Combust. Explos. Shock Waves. 2016. V.52. P. 535–543. https://doi.org/10.1134/S001050821605004X.
34. Kirillov V.A., Fedorova Z.A., Danilova M.M., Zaikovskii V.I., Kuzin N.A., Kuzmin V.A., Krieger T.A., Mescheryakov V.D. // Appl. Catal. A Gen. 2011. V.401. P. 170–175. https://doi.org/10.1016/j.apcata.2011.05.018.
35. Kirillov V.A., Shigarov A.B., Kuzin N.A., Kireenkov V. V., Braiko A.S., Burtsev N. V. // Katal. v Promyshlennosti. 2019. V.19. P. 351–363. https://doi.org/10.18412/1816-0387-2019-5-351-363.
36. Tikhov S.F., Sadykov V.A., Valeev K.R., Salanov A.N., Cherepanova S. V., Bespalko Y.N.,. Ramanenkau V.E, Piatsiushyk Y.Y., Dimov S. V. // Catal. Today. 2015. V.246. P. 232–238. https://doi.org/10.1016/j.cattod.2014.12.009.
37. Samoilov A. V., Kirillov V.A., Shigarov A.B., Braiko A.S., Potemkin D.I., Shoinkhorova T.B., Snytnikov P. V., Uskov S.I., Pechenkin A.A., Belyaev V.D., Sobyanin V.A. //Katal. v Promyshlennosti. 2018. V.18. P. 41–47. https://doi.org/10.18412/1816-0387-2018-3-41-47.
38. Hernández-Garrido J.C., Gaona D., Gómez D.M., Gatica J.M., Vidal H., Sanz O., Rebled J.M., Peiró F., Calvino J.J. // Catal. Today. 2015. V.253. P. 190–198. https://doi.org/10.1016/j.cattod.2015.01.035.
39. Reichelt E., Heddrich M.P., Jahn M., Michaelis A. // Appl. Catal. A Gen. 2014. V.476. P. 78–90. https://doi.org/10.1016/j.apcata.2014.02.021.
40. Escalante Y., Galetti A.E., Gómez M.F., Furlong O.J., Nazzarro M.S., Barroso M.N., Abello M.C. // Int. J. Hydrogen Energy. 2020. V.45. P. 20956–20969. https://doi.org/10.1016/j.ijhydene.2020.05.188.
41. Khalighi R., Bahadoran F., Panjeshahi M.H., Zamaniyan A., Tahouni N. // Microporous Mesoporous Mater. 2020. V.305. P.110371. https://doi.org/10.1016/j.micromeso.2020.110371.
42. Porsin A. V., Kulikov A. V., Rogozhnikov V.N., Serkova A.N., Salanov A.N., Shefer K.I. // Catal. Today. 2016. V.273. P. 213–220. https://doi.org/10.1016/j.cattod.2016.03.033.
43. Rogozhnikov V.N., Potemkin D.I., Pakharukova V.P., Belyaev V.D., Nedolivko V.V., Glotov A.P., Sobyanin V.A., Snytnikov P.V. // Int. J. Hydrogen Energy. 2021. V.46. P. 35853–35865. https://doi.org/10.1016/j.ijhydene.2021.03.164.
44. Rogozhnikov V.N., Snytnikov P.V., Salanov A.N., Kulikov A.V., Ruban N.V., Potemkin D.I., Sobyanin V.A., Kharton V.V. // Mater. Lett. 2019. V.236. P. 316–319. https://doi.org/10.1016/j.matlet.2018.10.133.
45. Ruban N.V., Rogozhnikov V.N., Zazhigalov S.V., Zagoruiko A.N., Emelyanov V.A., Snytnikov P.V., Sobyanin V.A., Potemkin D.I. // Materials (Basel). 2022. V.15. P. 7336. https://doi.org/10.3390/ma15207336.
46. Ruban N.V., Rogozhnikov V.N., Stonkus O.A., Emelyanov V.A., Pakharukova V.P., Svintsitskiy D.A., Zazhigalov S.V., Zagoruiko A.N., Snytnikov P.V., Sobyanin V.A., Potemkin D.I. // Fuel. 2023. V.352. P. 128973. https://doi.org/10.1016/j.fuel.2023.128973.
47. Badmaev S.D., Akhmetov N.O., Belyaev V.D., Kulikov A.V., Pechenkin A.A., Potemkin D.I., Konishcheva M.V., Rogozhnikov V.N., Snytnikov P.V., Sobyanin V.A. // Int. J. Hydrogen Energy. 2020. V.45. P. 26188–26196. https://doi.org/10.1016/j.ijhydene.2020.01.101.
48. Shilov V.A., Rogozhnikov V.N., Potemkin D.I., Snytnikov P.V. Synthesis and Study of the Catalytic Properties of a Structured Rh-Containing Catalyst for the Conversion of Diesel Fuel into Synthesis Gas, Kinet. Catal. 64 (2023) 96–104. https://doi.org/10.1134/S002315842301007X.
49. Zazhigalov S.V., Shilov V.A., Rogozhnikov V.N., Potemkin D.I., Sobyanin V.A., Zagoruiko A.N., Snytnikov P.V. // Catal. Today. 2021. V.378. P. 240–248. https://doi.org/10.1016/j.cattod.2020.11.015.
50. Shilov V.A., Rogozhnikov V.N., Ruban N.V., Potemkin D.I., Simonov P.A., Shashkov M.V., Sobyanin V.A., Snytnikov P.V. // Catal. Today. 2021. V.379. P. 42–49. https://doi.org/10.1016/j.cattod.2020.06.080.
51. Ruban N.V., Potemkin D.I., Rogozhnikov V.N., Shefer K.I., Snytnikov P.V., Sobyanin V.A. // Int. J. Hydrogen Energy. 2021. V.46. P. 35840–35852. https://doi.org/10.1016/j.ijhydene.2021.01.183.
52. Rogozhnikov V.N., Salanov A.N., Potemkin D.I., Glotov A.P., Boev S.V., Snytnikov P.V. // Mater. Lett. 2021. V.283. P.128855. https://doi.org/10.1016/j.matlet.2020.128855.
53. Konishcheva M. V., Svintsitskiy D.A., Potemkin D.I., Rogozhnikov V.N., Sobyanin V.A., Snytnikov P.V. // Chemistry Select. 2020. V.5. P. 1228–1234. https://doi.org/10.1002/slct.201904630.
54. Konishcheva M.V., Snytnikov P.V., Rogozhnikov V.N., Salanov A.N., Potemkin D.I., Sobyanin V.A. // Catal. Commun. 2019. V.118. P. 25–29. https://doi.org/10.1016/j.catcom.2018.09.011.
55. Gorlova A.M., Panafidin M.A., Shilov V.A., Pakharukova V.P., Snytnikov P.V., Potemkin D.I. // Int. J. Hydrogen Energy. 2023. V.48. P.12015–12023. https://doi.org/10.1016/j.ijhydene.2022.06.028.
56. Rogozhnikov V.N., Salanov A.N., Potemkin D.I., Pakharukova V.P., Stonkus O.A., Glotov A.P., Boev S.S., Zasypalov G.O., Melnikov D.P., Snytnikov P.V. // Mater. Lett. 2022. V.310. P. 131481. https://doi.org/10.1016/j.matlet.2021.131481.
57. Shoynkhorova T.B., Simonov P.A., Potemkin D.I., Snytnikov P.V., Belyaev V.D., Ishchenko A.V., Svintsitskiy D.A., Sobyanin V.A. // Appl. Catal. B Environ. 2018. V.237. P. 237–244. https://doi.org/10.1016/j.apcatb.2018.06.003.
Review
For citations:
Fedorova Z.A., Levchenko E.A., Rogozhnikov V.N., Potemkin D.I., Sivak A.V., Snytnikov P.V. Structured catalysts for the conversion of gaseous hydrocarbons - from laboratory studies to industrial applications. Kataliz v promyshlennosti. 2025;25(4):41-48. (In Russ.) https://doi.org/10.18412/1816-0387-2025-4-41-48