

Catalytic dimerization of ethylene on supported transition metal oxides. effect of the support nature
https://doi.org/10.18412/1816-0387-2025-4-60-70
Abstract
Palladium, nickel and cobalt oxides supported on the surface of various porous materials (g-Al2O3, B2O3/Al2O3, activated carbon and Sibunit) are considered as catalysts for ethylene dimerization. The use of alumina supports turned out to be fundamental for the synthesis of active palladium- and nickel-containing catalysts. Deposition on the carbon materials results in catalysts containing palladium and nickel predominantly in the metallic state, which does not provide the possibility of ethylene conversions. Cobalt catalysts, on the contrary, are most active when supported on a carbon surface due to the formation of CoO particles. These catalysts, due to the low density of acid sites on their surface, have an advantage in terms of achieving the maximum yield of butene-1, as the most valuable product of ethylene dimerization.
About the Authors
R. M. MironenkoRussian Federation
A. V. Lavrenov
Russian Federation
Yu. A. Chumachenko
Russian Federation
E. R. Saybulina
Russian Federation
T. R. Karpova
Russian Federation
M. A. Moiseenko
Russian Federation
O. V. Gorbunova
Russian Federation
T. I. Gulyaeva
Russian Federation
N. V. Kornienko
Russian Federation
I. V. Muromtsev
Russian Federation
M. V. Trenikhin
Russian Federation
References
1. Speight J.G. Handbook of Petrochemical Processes. Boca Raton: CRC Press, 2019. 561 p. DOI: 10.1201/9780429155611.
2. Geilen F.M.A., Stochniol G., Peitz S., Schulte-Koerne E. Butenes. In: Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 2013. DOI: 10.1002/14356007.a04_483.pub3.
3. Bender M. // ChemBioEng Rev. 2014. V. 1. № 4. P. 136–147. DOI: 10.1002/cben.201400016.
4. Сафина Ф.Ф., Харлампиди Х.Э. // Вестн. Казанского технол. ун-та. 2011. № 24. С. 20–26.
5. Белов Г.П. // Катализ в пром-сти. 2014. № 3. С. 13–19.
6. Forestière A., Olivier-Bourbigou H., Saussine L. // Oil Gas Sci. Technol. 2009. V. 64. № 6. P. 649–667. DOI: 10.2516/ogst/2009027.
7. Alenezi H., Alwi S.R.W., Manan Z.A., Zaidel D.N.A. // Int. J. Innovative Technol. Explor. Eng. 2019. V. 8. № 10. P. 3969–3975. DOI: 10.35940/ijitee.J9936.0881019.
8. Parfenova L.V., Bikmeeva A.Kh., Kovyazin P.V., Khalilov L.M. // Molecules. 2024. V. 29. № 2. 502. DOI: 10.3390/molecules29020502.
9. Bryliakov K.P., Antonov A.A. // J. Organomet. Chem. 2018. V. 867. P. 55–61. DOI: 10.1016/j.jorganchem.2018.03.021.
10. Olivier-Bourbigou H., Breuil P.A.R., Magna L., Michel T., Espada Pastor M.F., Delcroix D. // Chem. Rev. 2020. V. 120. № 15. P. 7919–7983. DOI: 10.1021/acs.chemrev.0c00076.
11. Metzger E.D., Brozek C.K., Comito R.J., Dincă M. // ACS Cent. Sci. 2016. V. 2. № 3. P. 148–153. DOI: 10.1021/acscentsci.6b00012.
12. Chen C., Alalouni M.R., Dong X., Cao Z., Cheng Q., Zheng L., Meng L., Guan C., Liu L., Abou-Hamad E., Wang J., Shi Z., Huang K.-W., Cavallo L., Han Y. // J. Am. Chem. Soc. 2021. V. 143. № 18. P. 7144–7153. DOI: 10.1021/jacs.1c02272.
13. Wang C., Li G., Guo H. // Mol. Catal. 2022. V. 524. 112340. DOI: 10.1016/j.mcat.2022.112340.
14. Kømurcu M., Lazzarini A., Kaur G., Borfecchia E., Øien-Ødegaard S., Gianolio D., Bordiga S., Lillerud K.P., Olsbye U. // Catal. Today. 2021. V. 369. P. 193–202. DOI: 10.1016/j.cattod.2020.03.038.
15. Hulea V. // ACS Catal. 2018. V. 8. P. 3263–3279. DOI: 10.1021/acscatal.7b04294.
16. Ghashghaee M. // Rev. Chem. Eng. 2017. V. 34. № 5. P. 595–655. DOI: 10.1515/revce-2017-0003.
17. Schuster C. // Z. Elektrochem. Angew. Phys. Chem. 1932. V. 38. № 8а. P. 614–618. DOI: 10.1002/bbpc.19320380839.
18. Cheney H.A., McAllister S.H., Fountain E.B., Anderson J., Peterson W.H. // Ind. Eng. Chem. 1950. V. 42. № 12. P. 2580–2586. DOI: 10.1021/ie50492a050.
19. Kiani D., Baltrusaitis J. // Catal. Today. 2021. V. 365. P. 24–34. DOI: 10.1016/j.cattod.2020.04.062.
20. Xu Z., Chada J.P., Xu L., Zhao D., Rosenfeld D.C., Rogers J.L., Hermans I., Mavrikakis M., Huber G.W. // ACS Catal. 2018. V. 8. № 3. P. 2488–2497. DOI: 10.1021/acscatal.7b03205.
21. Xu Z., Zhao D., Chada J.P., Rosenfeld D.C., Rogers J.L., Hermans I., Huber G.W. // J. Catal. 2017. V. 354. P. 213–222. DOI: 10.1016/j.jcat.2017.08.019.
22. Zhu K., An Y., Yu F., Liu L., Zhong L. // Catal. Lett. 2022. V. 152. P. 2131–2140. DOI: 10.1007/s10562-021-03790-7.
23. Kiani D., Ibrahim F., Hayden S., Hermans I., Beckham G.T. // Appl. Catal. B: Environ. Energy. 2025. V. 365. 124952. DOI: 10.1016/j.apcatb.2024.124952.
24. Карпова Т.Р., Лавренов А.В., Булучевский Е.А., Леонтьева Н.Н. // Изв. Акад. наук. Сер. хим. 2023. Т. 72. № 2. С. 379–392.
25. Agirrezabal-Telleria I., Iglesia E. // J. Catal. 2020. V. 389. P. 690–705. DOI: 10.1016/j.jcat.2020.06.038.
26. Lee K., Hong S.B. // Appl. Catal. A: Gen. 2021. V. 615. 118059. DOI: 10.1016/j.apcata.2021.118059.
27. Saxena A., Joshi R., Seemakurthi R.R., Koninckx E., Broadbelt L.J., Greeley J., Gounder R. // ACS Eng. Au. 2022. V. 2. № 1. P. 12–16. DOI: 10.1021/acsengineeringau.1c00014.
28. Lapidus A., Krylova A. Ethylene oligomerization over Ni- and Pd-zeolites. P. 245–251. In: Proceedings of the DGMK-Conference “Creating Value from Light Olefins – Production and Conversion”, Hamburg, October 10–12, 2001 (DGMK-Tagungsbericht 2001-4) / Ed. by G. Emig, H.-J. Krämer, J. Weitkamp. Hamburg: Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, 2001. 295 p.
29. Лапидус А.Л., Дергачев А.А. // Газохимия. 2008. № 4. С. 16–26.
30. Сайфулина Л.Ф. Полифункциональные Ni-, Pd-, Re-содержащие катализаторы одностадийного получения пропилена из этилена // Дис. … канд. хим. наук. Омск, 2016. 128 с.
31. Otroshchenko T., Sharapa D.I., Fedorova E.A., Zhao D., Kondratenko E.V. // Angew. Chem. Int. Ed. 2024. V. 63. № 44. e202410646. DOI: 10.1002/anie.202410646.
32. Суровикин В.Ф., Суровикин Ю.В., Цеханович М.С. // Рос. хим. журн. 2007. Т. 51. № 4. С. 111–118.
33. Лихолобов В.А., Суровикин В.Ф., Плаксин Г.В., Цеханович М.С., Суровикин Ю.В., Бакланова О.Н. // Катализ в пром-сти. 2008. Спецвыпуск. С. 63–68.
34. Карпова Т.Р., Булучевский Е.А., Лавренов А.В., Леонтьева Н.Н., Тренихин М.В., Гуляева Т.И., Талзи В.П. // Химия в интересах устойчивого развития. 2013. Т. 21. № 1. С. 61–68.
35. Yurpalov V.L., Drozdov V.A., Karpova T.R., Lavrenov A.V., Nepomnyashchii A.A., Buluchevskiy E.A. // J. Phys. Chem. C. 2022. V. 126. № 4. P. 1809–1816. DOI: 10.1021/acs.jpcc.1c09670.
36. Дроздов А.А., Зломанов В.П., Мазо Г.Н., Спиридонов Ф.М. Неорганическая химия. Т. 3. Кн. 2 / Под ред. Ю.Д. Третьякова. М.: Академия, 2007. 400 с.
37. Contescu C., Macovei D., Craiu C., Teodorescu C., Schwarz J.A. // Langmuir. 1995. V. 11. № 6. P. 2031–2040. DOI: 10.1021/la00006a032.
38. Lopes C.W., Cerrillo J.L., Palomares A.E., Rey F., Agostini G. // Phys. Chem. Chem. Phys. 2018. V. 20. № 18. P. 12700–12709. DOI: 10.1039/C8CP00517F.
39. Zhang Z., Zhang Z., Zhang X., Wang F., Wang Z., Li Y., Wang X., Ahishakiye R., Zhang X. // Appl. Surf. Sci. 2023. V. 612. 155871. DOI: 10.1016/j.apsusc.2022.155871.
40. Nag N.K. // J. Phys. Chem. B. 2001. V. 105. № 25. P. 5945–5949. DOI: 10.1021/jp004535q.
41. Mironenko R.M., Belskaya O.B., Stepanova L.N., Gulyaeva T.I., Trenikhin M.V., Likholobov V.A. // Catal. Lett. 2020. V. 150. № 3. P. 888‒900. DOI: 10.1007/s10562-019-02974-6.
42. Klokov S.V., Lokteva E.S., Golubina E.V., Chernavskii P.A., Maslakov K.I., Egorova T.B., Chernyak S.A., Minin A.S., Konev A.S. // Appl. Surf. Sci. 2019. V. 463. P. 395–402. DOI: 10.1016/j.apsusc.2018.08.105.
43. Silva L.M.S., Órfão J.J.M., Figueiredo J.L. // Appl. Catal. A: Gen. 2001. V. 209. № 1–2. P. 145–154. DOI: 10.1016/S0926-860X(00)00762-6.
44. Лапидус А.Л., Мальцев В.В., Гаранин В.И., Миначев Х.М., Эйдус Я.Т. // Изв. Акад. наук СССР. Сер. хим. 1975. № 12. С. 2819–2821.
45. Maxwell I.E. // Adv. Catal. 1982. V. 31. P. 1–76. DOI: 10.1016/S0360-0564(08)60452-6.
Review
For citations:
Mironenko R.M., Lavrenov A.V., Chumachenko Yu.A., Saybulina E.R., Karpova T.R., Moiseenko M.A., Gorbunova O.V., Gulyaeva T.I., Kornienko N.V., Muromtsev I.V., Trenikhin M.V. Catalytic dimerization of ethylene on supported transition metal oxides. effect of the support nature. Kataliz v promyshlennosti. 2025;25(4):60-70. (In Russ.) https://doi.org/10.18412/1816-0387-2025-4-60-70