Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of modified alumina support on the active surface of aluminum-nickel-molybdenum catalysts for conversion of ethylene to propylene

https://doi.org/10.18412/1816-0387-2025-4-71-81

Abstract

Ni, Mo-containing oxide catalysts synthesized using cation- and anion-modified aluminum oxide (Na2O-Al2O3, MgO-Al2O3, Al2O3-Al2O3, ZrO2-Al2O3, B2O3-Al2O3, SO42--Al2O3) as a support have been studied. The modification effect of the support surface on the physicochemical properties and catalysts activity in the process of conversion ethylene to propylene has been established. Anionic modification (B2O3-Al2O3, SO42--Al2O3) promotes an increase in the activity of catalysts, which is due to the formation of octahedrally coordinated Ni2+ ions bound to the acidic sites of the support surface. In contrast, cationic modification (Na2O-Al2O3, MgO-Al2O3, Al2O3-Al2O3, ZrO2-Al2O3) suppresses the development of ethylene conversion reactions. The maximum propylene yield of 51-52 wt.% is provided by catalysts based on a borate-containing support and unmodified alumina. They are distinguished by the presence of surface highly dispersed polymolybdate species and medium-strength Brønsted acid sites.

About the Authors

T. R. Karpova
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Omsk
Russian Federation


A. V. Lavrenov
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Omsk
Russian Federation


M. A. Moiseenko
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Omsk
Russian Federation


T. I. Gulyaeva
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Omsk
Russian Federation


A. B. Arbuzov
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Omsk
Russian Federation


O. V. Gorbunova
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Omsk
Russian Federation


I. V. Muromtsev
Center of New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Omsk
Russian Federation


References

1. Global Propylene Market to Boost in Coming Years – Projected to Reach 132.1 Metric Tons in 2028, at a CAGR of 6.1% during Forecast Period // BlueWeave Consulting and Research Pvt Ltd (2022); https://www.globenewswire.com/en/news-release/2022/03/31/2414083/0/en/ - дата обращения 20.11.2024.

2. Akah A., Williams J., Ghrami M. // Catal. Surv. Asia. 2019. V. 23. P. 265 – 276. https://doi.org/10.1007/s10563-019-09280-6

3. Gholami Z., Gholami F., Tisler Z., Tomas M., Vakili M. // Energies. 2021. V. 14. P. 1089. https://doi.org/10.3390/en14041089

4. Vogt E.T.C., Whiting G.T., Chowdhury A.D., Weckhuysen B.M. // Adv. Catal. 2015. V. 58. P. 143 – 314. https://doi.org/10.1016/bs.acat.2015.10.001

5. Kianfar E., Hajimirzaee S., Mousavian S., Mehr A.S. // Microchem. J. 2020. V. 156. P. 104822. https://doi.org/10.1016/j.microc.2020.104822

6. Mol J.C., van Leeuwen P.W.N.M. Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. P. 3240 – 3256. https://doi.org/10.1002/9783527610044.hetcat0164/

7. Beucher R, Cammarano C, Rodríguez-Castellón E, Hulea V. // Ind. Eng. Chem. Res. 2020. V. 59. P. 7438 – 7446. https://doi.org/10.1021/acs.iecr.0c00450

8. Perea L.A., Felischak M., Wolff T., Gaona J.A.L., Hamel C., Seidel-Morgenstern A. // Fuel. 2021. V. 284. P. 119031. https://doi.org/10.1016/j.fuel.2020.119031

9. Bao J., Yang G., Yoneyama Y., Tsubaki N. // ACS Catal. 2019. V. 9. P. 3026. https://doi.org/10.1021/acscatal.8b03924

10. Седов И.В., Макарян И.А., Берзигияров П.К., Магомедова М.В., Максимов А.Л. // Журнал прикладной химии. 2018. Т. 91. № 12. С. 1693 – 1707.

11. Mohsenzadeh A., Zamani A., Taherzadeh M.J. // ChemBioEng Rev. 2017. V. 4. № 2. P. 75 – 91. https://doi.org/10.1002/cben.201600025

12. Joshi R., Saxena A., Gounder R. // Catal. Sci. Technol. 2020. V. 10. P. 7101. https://doi.org/10.1039/D0CY01186J

13. Finiels A., Fajula F., Hulea V. // Catal. Sci. Technol. 2014. V 4. № 8. P. 2412 – 2426. https://doi.org/10.1039/C4CY00305E

14. Лапидус А.Л., Дергачев А.А. // Газохимия. 2008. С. 16 – 26.

15. Sayfulina L.F., Buluchevskiy E.A., Lavrenov A.V., Gulyaeva T.I., Trenikhin M.D., Protasova O.V., Gerasimov E.Y., Gulyaev R.V., Drozdov V.A. // Adv. Mater. Res. 2015. V. 1085. P. 17 – 22. https://doi.org/10.4028/www.scientific.net/AMR.1085.17.

16. Lwin S., Wachs I.E. // ACS Catal. 2014. V. 4. № 8. P. 2505 – 2520. https://doi.org/10.1021/cs500528h.

17. Nikiforov A.I., Chesnokov E.A., Popov A.G., Ivanova I.I. // J. Catal. 2024. V. 436. P. 115578. https://doi.org/10.1016/j.jcat.2024.115578.

18. Guo C.S., Hermann K., Hävecker M., Thielemann J.P., Kube P., Gregoriades L.J., Trunschke A., Sauer J., Schlögl R. // J. Phys. Chem. C. 2011. V. 115. P. 15449 – 15458. https://doi.org/10.1016/10.1021/jp2034642

19. Popoff N., Mazoyer E., Pelletier J., Gauvin R.M., Taoufik M. // Chem. Soc. Rev. 2013. V. 42. P. 9035 – 9054. https://doi.org/10.1039/C3CS60115C

20. Koninckx E., Mendes P.S.F., Thybaut J.W., Broadbelt L.J. // Appl. Catal. A Gen. 2021. V. 624, P. 118296. https://doi.org/10.1016/j.apcata.2021.118296

21. Лавренов А.В., Булучевский Е.А., Моисеенко М.А., Дроздов В.А., Арбузов А.Б., Гуляева Т.И., Лихолобов В.А., Дуплякин В.К. // Кинетика и катализ. 2010. Т. 51. № 3. С. 423 – 428.

22. Sohn J.R., Park W.C., Kim H.W. // J. Catal. 2002. V. 209. P. 69 – 74. https://doi.org/10.1006/jcat.2002.3581

23. Otroshchenko T., Zhang Q., Kondratenko E.V. // Catal. Let. 2022. V. 152. P. 2366 – 2374. https://doi.org/10.1007/s10562-021-03822-2

24. Amakawa K., Wrabetz S., Kröhnert J., Tzolova-Müller G., Schlögl R., Trunschke A. // J. Am. Chem. Soc. 2012. V. 134. P. 11462 – 11473. https://doi.org/10.1021/ja3011989

25. Debecker D.P., Bouchmella K., Stoyanova M., Rodemerck U., Gaigneaux E.M., Mutin P.H. // Catal. Sci. Technol. 2012. V. 2. № 6. P. 1157 – 1164. https://doi.org/10.1039/C2CY00475E

26. Hahn T., Bentrup U., Armbruster M., Kondratenko E.V., Linke D. // ChemCatChem. 2014. V. 6. P. 1664 – 1672. https://doi.org/10.1002/cctc.201400040

27. Mulcahy F.M., Houalla M., Hercules D.M. // J. Catal. 1993. V. 139. P. 72 – 80. https://doi.org/ 10.1006/jcat.1993.1008

28. Nikiforov A.I., Popov A.G., Chesnokov E.A., Ivanova I.I. // J. Catal. 2022. V. 415. P. 58 – 62. https://doi.org/10.1016/j.jcat.2022.09.024

29. Otroshchenko T., Zhang Q., Kondratenko E.V. // ACS Catal. 2021. V. 11. № 22. P. 14159 – 14167. https://doi.org/10.1021/acscatal.1c04267

30. Curtin T., McMonagle J.B., Hodnett B.K. // Appl. Catal. A Gen. 1992. V. 93. P. 75 – 89.

31. Лавренов А.В., Басова И.А., Казаков М.О., Финевич В.П., Бельская О.Б., Булучевский Е.А., Дуплякин В.К. // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2007. Т. LI. № 4. С. 75 – 85.

32. Okamoto Y., Imanaka T. // J. Phys. Chem. 1988. V. 92. № 25. P. 7102 – 7112. https://doi.org/10.1021/j100336a015

33. Nikolova D., Edreva-Kardjieva R., Giurginca M., Meghea A., Vakros J., Voyiatzis G.A., Kordulis C. // Vib. Spectrosc. 2007. V. 44. № 2. P. 343 – 350. https://doi.org/10.1016/j.vibspec.2007.03.002

34. Vidruk R., Landau M.V., Herskowitz M., Ezersky V., Goldbourt A. // J. Catal. 2011. V. 282. P. 215 – 227. https://doi.org/10.1016/j.jcat.2011.06.018

35. Faro Jr A.C., Souza K.R., Camorim V.L.D.L., Cardoso M.B. // Phys. Chem. Chem. Phys. 2003. V. 5. P. 1932 – 1940. https://doi.org/10.1039/b300899a

36. Korhonen S.T., Bañares M.A., Fierro J.L.G., Krause A.O.I. // Catal. Today. 2007. V. 126. 235 – 247. https://doi.org/10.1016/j.cattod.2007.01.008

37. Handzlik J., Ogonowski J., Stoch J., Mikołajczyk M., Michorczyk P. // Appl. Catal. A Gen. 2006. V. 312. № 1 – 2. P. 213 – 219. https://doi.org/10.1016/j.apcata.2006.07.002

38. Usman U., Takaki M., Kubota T., Okamoto Y. // Appl. Catal. A Gen. 2005. V. 286. № 1. P. 148 – 154. https://doi.org/10.1016/j.apcata.2005.03.020

39. Cai Z., Liang R., Yu P., Liu Y., Ma Y., Cao Y., Huang K., Jiang L., Bao X. // Fuel Process. Technol. 2022. V. 226. P. 107091. https://doi.org/10.1016/j.fuproc.2021.107091

40. Morales-Ortuño J.C., Klimova T.E. // Fuel. 2017. V. 198. P. 99 – 109. https://doi.org/10.1016/j.fuel.2017.01.007

41. Zhang D., Li X., Liu S., Zhu X., Chen F., Xu L. // Appl. Catal. A Gen. 2014. V. 472. P. 92 – 100. https://doi.org/10.1016/j.apcata.2013.12.019

42. Tian H., Roberts C.A., Wachs I.E. // J. Phys. Chem. C. 2010. V. 114. № 33. P. 14110 – 14120. https://doi.org/10.1021/jp103269w

43. Wang B., Ding G., Shang Y., Lv J., Wang H., Wang E., Li Z., Ma X., Qin S., Sun Q. // Appl. Catal. A Gen. 2012. V. 431 – 432. P. 144 – 150. https://doi.org/10.1016/j.apcata.2012.04.029

44. Карпова Т.Р., Лавренов А.В., Булучевский Е.А., Гуляева Т.И., Буяльская К.С., Шилова А.В., Леонтьева Н.Н., Арбузов А.Б., Дроздов В.А. // Катализ в промышленности. 2014. № 1. С. 24 – 31.

45. Davydov A.A., Kantcheva M., Chepotko M.L. // Catal. Let. 2002. V. 8. №. 1 – 2. P. 97 – 108. https://doi.org/10.1023/A:1020669818242

46. Chakrabarti A., Wachs I.E. // ACS Catal. 2017. V. 8. P. 949 – 959. https://doi.org/10.1021/acscatal.7b03598

47. Torres-Mancera P., Ramirez J., Cuevas R., Gutierrez-Alejandre A., Murrieta F., Luna R. // Catal. Today. 2005. V. 107 – 108. P. 551 – 558. https://doi.org/10.1016/j.cattod.2005.07.072

48. Ghashghaee M. // Rev. Chem. Eng. 2018. V. 34. P. 595 – 655. https://doi.org/10.1515/revce-2017-0003


Review

For citations:


Karpova T.R., Lavrenov A.V., Moiseenko M.A., Gulyaeva T.I., Arbuzov A.B., Gorbunova O.V., Muromtsev I.V. Effect of modified alumina support on the active surface of aluminum-nickel-molybdenum catalysts for conversion of ethylene to propylene. Kataliz v promyshlennosti. 2025;25(4):71-81. (In Russ.) https://doi.org/10.18412/1816-0387-2025-4-71-81

Views: 7


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)