

Effect of modified alumina support on the active surface of aluminum-nickel-molybdenum catalysts for conversion of ethylene to propylene
https://doi.org/10.18412/1816-0387-2025-4-71-81
Abstract
Ni, Mo-containing oxide catalysts synthesized using cation- and anion-modified aluminum oxide (Na2O-Al2O3, MgO-Al2O3, Al2O3-Al2O3, ZrO2-Al2O3, B2O3-Al2O3, SO42--Al2O3) as a support have been studied. The modification effect of the support surface on the physicochemical properties and catalysts activity in the process of conversion ethylene to propylene has been established. Anionic modification (B2O3-Al2O3, SO42--Al2O3) promotes an increase in the activity of catalysts, which is due to the formation of octahedrally coordinated Ni2+ ions bound to the acidic sites of the support surface. In contrast, cationic modification (Na2O-Al2O3, MgO-Al2O3, Al2O3-Al2O3, ZrO2-Al2O3) suppresses the development of ethylene conversion reactions. The maximum propylene yield of 51-52 wt.% is provided by catalysts based on a borate-containing support and unmodified alumina. They are distinguished by the presence of surface highly dispersed polymolybdate species and medium-strength Brønsted acid sites.
About the Authors
T. R. KarpovaRussian Federation
A. V. Lavrenov
Russian Federation
M. A. Moiseenko
Russian Federation
T. I. Gulyaeva
Russian Federation
A. B. Arbuzov
Russian Federation
O. V. Gorbunova
Russian Federation
I. V. Muromtsev
Russian Federation
References
1. Global Propylene Market to Boost in Coming Years – Projected to Reach 132.1 Metric Tons in 2028, at a CAGR of 6.1% during Forecast Period // BlueWeave Consulting and Research Pvt Ltd (2022); https://www.globenewswire.com/en/news-release/2022/03/31/2414083/0/en/ - дата обращения 20.11.2024.
2. Akah A., Williams J., Ghrami M. // Catal. Surv. Asia. 2019. V. 23. P. 265 – 276. https://doi.org/10.1007/s10563-019-09280-6
3. Gholami Z., Gholami F., Tisler Z., Tomas M., Vakili M. // Energies. 2021. V. 14. P. 1089. https://doi.org/10.3390/en14041089
4. Vogt E.T.C., Whiting G.T., Chowdhury A.D., Weckhuysen B.M. // Adv. Catal. 2015. V. 58. P. 143 – 314. https://doi.org/10.1016/bs.acat.2015.10.001
5. Kianfar E., Hajimirzaee S., Mousavian S., Mehr A.S. // Microchem. J. 2020. V. 156. P. 104822. https://doi.org/10.1016/j.microc.2020.104822
6. Mol J.C., van Leeuwen P.W.N.M. Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. P. 3240 – 3256. https://doi.org/10.1002/9783527610044.hetcat0164/
7. Beucher R, Cammarano C, Rodríguez-Castellón E, Hulea V. // Ind. Eng. Chem. Res. 2020. V. 59. P. 7438 – 7446. https://doi.org/10.1021/acs.iecr.0c00450
8. Perea L.A., Felischak M., Wolff T., Gaona J.A.L., Hamel C., Seidel-Morgenstern A. // Fuel. 2021. V. 284. P. 119031. https://doi.org/10.1016/j.fuel.2020.119031
9. Bao J., Yang G., Yoneyama Y., Tsubaki N. // ACS Catal. 2019. V. 9. P. 3026. https://doi.org/10.1021/acscatal.8b03924
10. Седов И.В., Макарян И.А., Берзигияров П.К., Магомедова М.В., Максимов А.Л. // Журнал прикладной химии. 2018. Т. 91. № 12. С. 1693 – 1707.
11. Mohsenzadeh A., Zamani A., Taherzadeh M.J. // ChemBioEng Rev. 2017. V. 4. № 2. P. 75 – 91. https://doi.org/10.1002/cben.201600025
12. Joshi R., Saxena A., Gounder R. // Catal. Sci. Technol. 2020. V. 10. P. 7101. https://doi.org/10.1039/D0CY01186J
13. Finiels A., Fajula F., Hulea V. // Catal. Sci. Technol. 2014. V 4. № 8. P. 2412 – 2426. https://doi.org/10.1039/C4CY00305E
14. Лапидус А.Л., Дергачев А.А. // Газохимия. 2008. С. 16 – 26.
15. Sayfulina L.F., Buluchevskiy E.A., Lavrenov A.V., Gulyaeva T.I., Trenikhin M.D., Protasova O.V., Gerasimov E.Y., Gulyaev R.V., Drozdov V.A. // Adv. Mater. Res. 2015. V. 1085. P. 17 – 22. https://doi.org/10.4028/www.scientific.net/AMR.1085.17.
16. Lwin S., Wachs I.E. // ACS Catal. 2014. V. 4. № 8. P. 2505 – 2520. https://doi.org/10.1021/cs500528h.
17. Nikiforov A.I., Chesnokov E.A., Popov A.G., Ivanova I.I. // J. Catal. 2024. V. 436. P. 115578. https://doi.org/10.1016/j.jcat.2024.115578.
18. Guo C.S., Hermann K., Hävecker M., Thielemann J.P., Kube P., Gregoriades L.J., Trunschke A., Sauer J., Schlögl R. // J. Phys. Chem. C. 2011. V. 115. P. 15449 – 15458. https://doi.org/10.1016/10.1021/jp2034642
19. Popoff N., Mazoyer E., Pelletier J., Gauvin R.M., Taoufik M. // Chem. Soc. Rev. 2013. V. 42. P. 9035 – 9054. https://doi.org/10.1039/C3CS60115C
20. Koninckx E., Mendes P.S.F., Thybaut J.W., Broadbelt L.J. // Appl. Catal. A Gen. 2021. V. 624, P. 118296. https://doi.org/10.1016/j.apcata.2021.118296
21. Лавренов А.В., Булучевский Е.А., Моисеенко М.А., Дроздов В.А., Арбузов А.Б., Гуляева Т.И., Лихолобов В.А., Дуплякин В.К. // Кинетика и катализ. 2010. Т. 51. № 3. С. 423 – 428.
22. Sohn J.R., Park W.C., Kim H.W. // J. Catal. 2002. V. 209. P. 69 – 74. https://doi.org/10.1006/jcat.2002.3581
23. Otroshchenko T., Zhang Q., Kondratenko E.V. // Catal. Let. 2022. V. 152. P. 2366 – 2374. https://doi.org/10.1007/s10562-021-03822-2
24. Amakawa K., Wrabetz S., Kröhnert J., Tzolova-Müller G., Schlögl R., Trunschke A. // J. Am. Chem. Soc. 2012. V. 134. P. 11462 – 11473. https://doi.org/10.1021/ja3011989
25. Debecker D.P., Bouchmella K., Stoyanova M., Rodemerck U., Gaigneaux E.M., Mutin P.H. // Catal. Sci. Technol. 2012. V. 2. № 6. P. 1157 – 1164. https://doi.org/10.1039/C2CY00475E
26. Hahn T., Bentrup U., Armbruster M., Kondratenko E.V., Linke D. // ChemCatChem. 2014. V. 6. P. 1664 – 1672. https://doi.org/10.1002/cctc.201400040
27. Mulcahy F.M., Houalla M., Hercules D.M. // J. Catal. 1993. V. 139. P. 72 – 80. https://doi.org/ 10.1006/jcat.1993.1008
28. Nikiforov A.I., Popov A.G., Chesnokov E.A., Ivanova I.I. // J. Catal. 2022. V. 415. P. 58 – 62. https://doi.org/10.1016/j.jcat.2022.09.024
29. Otroshchenko T., Zhang Q., Kondratenko E.V. // ACS Catal. 2021. V. 11. № 22. P. 14159 – 14167. https://doi.org/10.1021/acscatal.1c04267
30. Curtin T., McMonagle J.B., Hodnett B.K. // Appl. Catal. A Gen. 1992. V. 93. P. 75 – 89.
31. Лавренов А.В., Басова И.А., Казаков М.О., Финевич В.П., Бельская О.Б., Булучевский Е.А., Дуплякин В.К. // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2007. Т. LI. № 4. С. 75 – 85.
32. Okamoto Y., Imanaka T. // J. Phys. Chem. 1988. V. 92. № 25. P. 7102 – 7112. https://doi.org/10.1021/j100336a015
33. Nikolova D., Edreva-Kardjieva R., Giurginca M., Meghea A., Vakros J., Voyiatzis G.A., Kordulis C. // Vib. Spectrosc. 2007. V. 44. № 2. P. 343 – 350. https://doi.org/10.1016/j.vibspec.2007.03.002
34. Vidruk R., Landau M.V., Herskowitz M., Ezersky V., Goldbourt A. // J. Catal. 2011. V. 282. P. 215 – 227. https://doi.org/10.1016/j.jcat.2011.06.018
35. Faro Jr A.C., Souza K.R., Camorim V.L.D.L., Cardoso M.B. // Phys. Chem. Chem. Phys. 2003. V. 5. P. 1932 – 1940. https://doi.org/10.1039/b300899a
36. Korhonen S.T., Bañares M.A., Fierro J.L.G., Krause A.O.I. // Catal. Today. 2007. V. 126. 235 – 247. https://doi.org/10.1016/j.cattod.2007.01.008
37. Handzlik J., Ogonowski J., Stoch J., Mikołajczyk M., Michorczyk P. // Appl. Catal. A Gen. 2006. V. 312. № 1 – 2. P. 213 – 219. https://doi.org/10.1016/j.apcata.2006.07.002
38. Usman U., Takaki M., Kubota T., Okamoto Y. // Appl. Catal. A Gen. 2005. V. 286. № 1. P. 148 – 154. https://doi.org/10.1016/j.apcata.2005.03.020
39. Cai Z., Liang R., Yu P., Liu Y., Ma Y., Cao Y., Huang K., Jiang L., Bao X. // Fuel Process. Technol. 2022. V. 226. P. 107091. https://doi.org/10.1016/j.fuproc.2021.107091
40. Morales-Ortuño J.C., Klimova T.E. // Fuel. 2017. V. 198. P. 99 – 109. https://doi.org/10.1016/j.fuel.2017.01.007
41. Zhang D., Li X., Liu S., Zhu X., Chen F., Xu L. // Appl. Catal. A Gen. 2014. V. 472. P. 92 – 100. https://doi.org/10.1016/j.apcata.2013.12.019
42. Tian H., Roberts C.A., Wachs I.E. // J. Phys. Chem. C. 2010. V. 114. № 33. P. 14110 – 14120. https://doi.org/10.1021/jp103269w
43. Wang B., Ding G., Shang Y., Lv J., Wang H., Wang E., Li Z., Ma X., Qin S., Sun Q. // Appl. Catal. A Gen. 2012. V. 431 – 432. P. 144 – 150. https://doi.org/10.1016/j.apcata.2012.04.029
44. Карпова Т.Р., Лавренов А.В., Булучевский Е.А., Гуляева Т.И., Буяльская К.С., Шилова А.В., Леонтьева Н.Н., Арбузов А.Б., Дроздов В.А. // Катализ в промышленности. 2014. № 1. С. 24 – 31.
45. Davydov A.A., Kantcheva M., Chepotko M.L. // Catal. Let. 2002. V. 8. №. 1 – 2. P. 97 – 108. https://doi.org/10.1023/A:1020669818242
46. Chakrabarti A., Wachs I.E. // ACS Catal. 2017. V. 8. P. 949 – 959. https://doi.org/10.1021/acscatal.7b03598
47. Torres-Mancera P., Ramirez J., Cuevas R., Gutierrez-Alejandre A., Murrieta F., Luna R. // Catal. Today. 2005. V. 107 – 108. P. 551 – 558. https://doi.org/10.1016/j.cattod.2005.07.072
48. Ghashghaee M. // Rev. Chem. Eng. 2018. V. 34. P. 595 – 655. https://doi.org/10.1515/revce-2017-0003
Review
For citations:
Karpova T.R., Lavrenov A.V., Moiseenko M.A., Gulyaeva T.I., Arbuzov A.B., Gorbunova O.V., Muromtsev I.V. Effect of modified alumina support on the active surface of aluminum-nickel-molybdenum catalysts for conversion of ethylene to propylene. Kataliz v promyshlennosti. 2025;25(4):71-81. (In Russ.) https://doi.org/10.18412/1816-0387-2025-4-71-81