Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Application of organic reducing agents for the synthesis of Ni-Cu/Al2O3 catalysts by solution combustion method

https://doi.org/10.18412/1816-0387-2025-5-24-38

Abstract

Ni-Cu/Al2O3 catalysts used for the synthesis of nanofibrous carbon and hydrogen were prepared via solution combustion synthesis method with various fuels: sucrose, urea and oxalic acid. The effect of different organic fuel contents on the composition and textural characteristics of the resulting catalysts was investigated. Catalyst samples were tested in a quartz flow reactor at 550°C in methane at atmospheric pressure. The effect of fuel content on the catalyst performance in the synthesis of nanofibrous carbon and hydrogen was studied. The resulting catalyst was a powder with a specific surface area of 60–128 m2/g.

About the Authors

P. B. Kurmashov
Novosibirsk State Technical University, Novosibirsk
Russian Federation


Т. S. Gudyma
Novosibirsk State Technical University, Novosibirsk
Russian Federation


V. Golovakhin
Novosibirsk State Technical University, Novosibirsk
Russian Federation


А. А. Shishin
Novosibirsk State Technical University, Novosibirsk
Russian Federation


А. V. Ukhina
Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk
Russian Federation


Е. А. Maximovskiy
Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk
Russian Federation


А. V. Ishchenko
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


А. G. Bannov
Novosibirsk State Technical University, Novosibirsk
Russian Federation


References

1. Li Y., Li D., Wang G. // Catal. Today. 2011. V. 162. № 1. Р. 1–48. https://doi.org/10.1016/j.cattod.2010.12.042

2. Ibrahimov H., Malikli S., Ibrahimova Z., Babali R., Aleskerova S. // Appl. Petrochemical Res. 2021. V. 11. Р. 123–128. https://doi.org/10.1007/s13203-021-00264-0

3. Hasnan N., Timmiati S., Lim K.L., Yaakob Z., Kamaruddin N., The L.P. // Mater. Renew. Sustain. Energy. 2020. V. 9. P. 1–18. https://doi.org/10.1007/s40243-020-00167-5

4. Torres D., Pinilla J.L., Suelves I. // Catalysts. 2018. V. 8. P. 1-15. https://doi.org/10.3390/catal8080300

5. Karimi E.Z., Khaki J.V., Zebarjad S.M., Bataev I.A., Bannov A.G. // Bulletin of Materials Science. 2014. V. 37. № 3. P. 1-8. https://doi.org/10.1007/s12034-014-0041-2

6. Konno K., Onoe K., Takiguchi Y., Yamaguchi T. // Green and Sustainable Chemistry. 2013. V. 3. № 1. P. 19-25. https://doi.org/10.4236/gsc.2013.31004

7. Lapekin N.I., Kurmashov P.B., Larina T.V., Chesalov Y.A., Kurdyumov D.S., Ukhina A.V., Maksimovskiy E.A., Ishchenko A.V., Sysoev V.I., Bannov A.G. // Chemosensors. 2023. V. 11. № 7. P. 381. https://doi.org/10.3390/chemosensors11070381

8. Almiron J., Alcazar H., Churata R, AnascoR.C., Francine R., Ziouche K., Chicot D. // Mater. Res. Express. 2018. V. 5. № 12. P. 381. https://doi.org/10.1088/2053-1591/aadeb2

9. Pervikov A.V., Pustovalov A.V., Afonnikova S.D., Bauman Y.I., Mishakov I.V., Vedyagin A.A. // Powder Technol. 2023. V. 415. P. 118164. https://doi.org/10.1016/j.powtec.2022.118164

10. Стрельцов И.А., Винокурова О.Б., Токарева И.В., Мишаков И.В., Исупов В.П., Шубин Ю.В., Ведягин А.А. // Катализ в промышленности. 2014. № 2. С. 59-65.

11. Agrafonov Y.V., Petrushin I.S., Prosekin M.Y., Prosekina I.G., Rzechizkii A.E. // Bulletin of the Russian Academy of Sciences Physics. 2007. V. 71 № 2. P. 175-177. https://doi.org/10.3103/S1062873807020074

12. Cuervo M.R., Asedegbega-Nieto E., Diaz E., Vega A., Ordonez S., Castillejos-Lopez E., Rodriguez-Ramos I. // J. Chromatogr. A. 2008. V. 1188. № 2. P. 264-273. https://doi.org/10.1016/j.chroma.2008.02.061

13. Bong H.K., Pestov S.M., Flid V.R., Karaeva A.R. Peshnev B.V. // Open J. Appl. Sci. 2017. V. 7. № 12. P. 720-728. https://doi.org/10.4236/ojapps.2017.712051

14. Gudyma T.S., Krutskii Y.L., Maksimovskiy E.A., Cherkasova N.Y., Lapekin N.I., Larina T.V. // Powder Metallurgy аnd Functional Coatings. 2023. V. 17. № 2. P. 35-45. https://doi.org/10.17073/1997-308X-2023-2-35-45

15. Dik D.V., Gudyma T.S., Filippov A.A., Fomin V.M., Krutskii Yu.L. // J. Appl. Mech. Tech. Phys. 2024. V. 65. № 2. P. 249-256. https://doi.org/10.1134/S0021894424020068

16. Bannov A.G., Popov M.V., Brester A.E., Kurmashov P.B. // Micromachines. 2021. V. 12. № 2. P. 186. https://doi.org/10.3390/mi12020186

17. Yu Y., Xue S., Zhao C., Barnych B., Sun G. // Appl. Surf. Sci. 2022. V. 582. № 1. P. 152392. https://doi.org/10.1016/j.apsusc.2021.152392

18. Zhao Y., Wang X., Lai C., He G., Zhang L., Fong H., Zhu Z. // RSC Advances. 2012. V. 2. № 27. P. 10195-10199. https://doi.org/10.1039/c2ra21338a

19. Chesnokov V.V., Chichkan A.S. // Int. J. Hydrogen Energy. 2009. V. 34. № 7. P. 2979-2985. https://doi.org/10.1016/j.ijhydene.2009.01.074

20. Pourdelan H., Alavi M.S., Rezaei M., Akbari E. // Catal. Letters. 2023. V. 153. № 10. P 3759-3173. https://doi.org/10.1007/s10562-022-04175-0

21. Патент RU 2722298, опубл. 28.05.2020

22. Ferk G., Stergar J., Drofenik M., Makovec D., Hamler A., Jaglicic Z., Ban I. // Materials Letters. 2014. V. 124. P. 39–42. https://doi.org/10.1016/j.matlet.2014.03.030

23. Gulyaeva Y.K., Alekseeva M.V., Bulavchenko O.A., Kremneva A., Saraev A., Gerasimov E., Selishcheva S., Kaichev V., Yakovlev V. // Nanomaterials. 2021. V. 11. № 8. P. 2017. https://doi.org/10.3390/nano11082017

24. Wang D., Ran S., Shen L., Sun H., Huang Q. // J. Eur. Ceram. Soc. V. 35. № 3. P. 1107–1112. https://doi.org/10.1016/j.jeurceramsoc.2014.10.018

25. Pudukudy M., Yaakob Z., Kadier A., Takriff M.S. // Int. J. Hydrogen Energy. 2017. V. 42. № 26. P. 16495–16513. https://doi.org/10.1016/j.ijhydene.2017.04.223

26. Veselov G.B., Afonnikova S.D., Mishakov I.V., Vedyagin A.A. // J. Sol-Gel Sci. Technol. 2024. V. 109. P 859–877. https://doi.org/10.1007/s10971-024-06336-6

27. Гаврилова Н.Н., Либерман Е.Ю., Яровая О.В., Кошкин А.Г., Назаров В.В., Михайличенко А.И. // Катализ в промышленности. 2012. № 2. С. 48–55.

28. Naghash A.R., Xu Z., Etsell T.H. // Chem. Mater. 2005 . V. 17. № 4. Р. 815–821. https://doi.org/10.1021/cm048476v

29. Nimse P., Lokhande R.S., Jaybhaye S. // Int. J. Creat. Res. Thoughts. 2023. V. 11. № 4. P. 39-44. https://doi.org/10.1729/Journal.34166

30. Ashik U.P.M., Wan Daud W.M.A. // RSC Advances. 2015. V. 82. P. 1-26.

31. Seong I.H., Kang S.C., Lee J.D. // Res. Chem. Intermed. 2024.

32. V. 50. P. 2841–2858 https://doi.org/10.21203/rs.3.rs-3868859/v1

33. Hantoko D., Khan W.U., Osman A.I., Nasr M., Rashwan A.K., Gambo Y., Shoaibi A.A., Chandrasekar S., Hossain M. // Environ. Chem. Lett. 2024. V. 22. № 4. P. 1623–1663. https://doi.org/10.1007/s10311-024-01732-4

34. Alwan B.A.A., Shah M., Danish M., Mesfer M.K.A., Khan M.I., Natarajan V. // J. Indian Chem. 2022. V. 99. № 4 P. 100393. https://doi.org/10.1016/j.jics.2022.100393

35. Kurmashov P.B., Ukhina A.V., Manakhov A., Ishchenko A.V., Maksimovskii E.A., Bannov A.G. // Applied Sciences. 2023. V. 13. № 6. P. 3962. https://doi.org/ 10.3390/app13063962

36. Kumar A., Cross A., Manukyan K., Bhosale R., Broeke L.J.P., Miller J.T., Mukasyan A.S., Wolf E. // Chem. Eng. J. 2015. V. 278. P. 46–54. https://doi.org/10.1016/j.cej.2015.01.012

37. Kuvshinov D.G., Kurmashov P.B., Bannov A.G., Popov M.V.,

38. Kuvshinov G. // Int. J. Hydrogen Energy. 2019. V.44. № 31. P. 16271–16286. https://doi.org/10.1016/j.ijhydene.2019.04.179

39. Kurmashov P.B., Timofeev V.S., Ukhina A.V., Ishchenko A.V., Larina T.V., Chesalov Y.A., Tan L., Chen Y., Maksimovskiy E.A., Bannov A.G. // Int. J. Hydrogen Energy. 2024. V. 89. P. 1342–1353. https://doi.org/10.1016/j.ijhydene.2024.09.254

40. Afonnikova S.D., Veselov G.B., Bauman Y.I., Gerasimov E.Y., Shubin Y.V., Mishakov I.V., Vedyagin A.A. // J. Compos. Sci. 2023. V.7. № 6. P.238. https://doi.org/10.3390/jcs7060238

41. Afonnikova S.D., Bauman Y.I., Stoyanovskii V.O., Volochaev M.N., Mishakov I.V., Vedyagin A.A. // C-J. Carbon Res. 2023. V. 9. №. 3. P. 77. https://doi.org/10.3390/c9030077

42. Yao D., Haiping Y., Chen H., Williams P.T. // Appl. Catal. B Environ. 2018. V. 239. P. 565–577. https://doi.org/ 10.1016/j.apcatb.2018.07.075

43. Kruissink E.C., Reijen L.L. Ross J.R.H. // J. Chem. Soc., Faraday Trans. 1. 1989. V. 85. P. 649-663. https://doi.org/10.1039/F198985FX045

44. Perez-Lopez O.W., Senger A., Marcilio N.R., Lansarin M.A. // Appl. Catal. A: Gen. 2006. V. 303. № 2. P. 234–244. https://doi.org/10.1016/j.apcata.2006.02.024

45. Shen Y., Lua. C.A. // RSC Adv. 2014. V. 4. № 79. P. 42159–42167. https://doi.org/10.1039/C4RA04379K

46. Prakash A.S., Khadar A.M.A., Patil K.C., Hegde M.S. // J. mater. synth. process. 2002. V. 10. № 3. P. 135-141. https://doi.org/10.1023/A:1021986613158

47. Mukasyan A S, Epstein P.S., Dinka P. // Proc. Combust. Inst. 2007. V. 31. № 2. P. 1789–1795. https://doi.org/10.1016/j.proci.2006.07.052

48. Kurmashov Р.В., Popov M.V., Brester A.E., Ukhina A.V., Bannov A.G. // Doklady Chemistry. 2023. V. 511. № 2. P. 209–216. https://doi.org/10.1134/S0012500823600426

49. Zhuravlev V.D., Bamburov V.G., Beketov A.R., Perelyaeva L.A., Baklanova I.V., Sivtsova O.V., Vasil'ev V.G., Vladimirova E.V., Shevchenko V.G., Grigorov I.G. // Ceram. Int. V. 39. № 2. Р. 1379–1384. https://doi.org/10.1016/j.ceramint.2012.07.078

50. Tahmasebi K., Paydar M.H. // Mater. Chem. Phys. 2008. V. 109, № 1, P. 156-163. https://doi.org/10.1016/j.matchemphys.2007.11.009

51. Fan Z., Weng W., Zhou J., Gu D., Xiao W. // J. Energy Chem. 2021. V. 58. P. 415–430. https://doi.org/10.1016/j.jechem.2020.10.049

52. Wang I.-W., Dagle R., Khan T.S., Lopez-Ruiz J.A., Kovarik L., Jiang Y., Xu M., Wang Y., Changle J., Davidson, S.D., Tavadze P., Li L., Hu J. // Catal. Sci. Technol. 2021. V. 11. № 14. https://doi.org/10.1039/D1CY00287B

53. Smirnov A.A., Khromova S.A., Bulavchenko O.A., Kaichev V.V., Saraev A.A., Reshetnikov S.I., Bykova M.V., Trusov L.I., Yakovlev V.A. // Kinetics and Catalysis. 2014. V. 55. № 1. P. 72–81. https://doi.org/10.1134/S0023158414010145

54. Седакова В.А., Громова Е.С. // Вестник фармации. 2011. № 4. С. 17-22.

55. de Menezes B.R.C., Ferreira F.V., Silva B.C., Simonetti E.A.N., Bastos T.M., Cividanes L.S., Thim G.P. // J. Mater. Sci. 2018. V. 53. P. 14311–14327. https://doi.org/10.1007/s10853-018-2627-3

56. Threlfall T. // Vib. Spectrosc. 2022. V. 121. P. 103386.

57. Factorovich M., Guz L., Candal R. // Adv. Phys. Chem. V. 2011. P. 1-8. https://doi.org/10.1155/2011/821204

58. Duan Q., Cao H., Li X., Sun J. // Process Saf. Environ. Prot. 2023. V. 171. P. 482–892. https://doi.org/10.1016/j.psep.2023.01.032

59. Mojet B.L., Ebbesen S.D., Lefferts L. // Chem. Soc. Rev. 2010. V. 39. № 12. P. 4643–55. https://10.1039/c0cs00014k

60. Cunha A.F., Orfao J.J.M., Figueiredo J.L. // Int. J. Hydrog. Energy. 2009. V. 34 P. 4763–4772. https://doi.org/10.1016/j.ijhydene.2009.03.040


Review

For citations:


Kurmashov P.B., Gudyma Т.S., Golovakhin V., Shishin А.А., Ukhina А.V., Maximovskiy Е.А., Ishchenko А.V., Bannov А.G. Application of organic reducing agents for the synthesis of Ni-Cu/Al2O3 catalysts by solution combustion method. Kataliz v promyshlennosti. 2025;25(5):24-38. (In Russ.) https://doi.org/10.18412/1816-0387-2025-5-24-38

Views: 5


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)