

Синтез Ni-Cu/Al2O3-катализаторов разложения метана методом горения с использованием топливных добавок
https://doi.org/10.18412/1816-0387-2025-5-24-38
Аннотация
Применяемые для синтеза нановолокнистого углерода и водорода катализаторы Ni-Cu/Al2O3 приготовлены методом горения растворов с использованием в качестве топлива сахарозы, мочевины и щавелевой кислоты. Полученный катализатор представлял собой порошок с удельной поверхностью 60–128 м2/г. Тестирование образцов катализатора проводили в проточном реакторе при температуре 550 °С в среде метана при давлении 1 и 5 атм. Изучено влияние содержания органического топлива на состав и текстурные характеристики получаемых катализаторов и на эффективность работы катализатора в процессе синтеза нановолокнистого углерода и водорода. Обнаружено, что степень конверсии метана варьировалась в диапазоне 5–17,5 % и возрастала при повышении давления с 1 до 5 атм.
Об авторах
П. Б. КурмашовРоссия
Т. С. Гудыма
Россия
В. Головахин
Россия
А. А. Шишин
Россия
А. В. Ухина
Россия
Е. А. Максимовский
Россия
А. В. Ищенко
Россия
А. Г. Баннов
Россия
Список литературы
1. Li Y., Li D., Wang G. // Catal. Today. 2011. V. 162. № 1. Р. 1–48. https://doi.org/10.1016/j.cattod.2010.12.042
2. Ibrahimov H., Malikli S., Ibrahimova Z., Babali R., Aleskerova S. // Appl. Petrochemical Res. 2021. V. 11. Р. 123–128. https://doi.org/10.1007/s13203-021-00264-0
3. Hasnan N., Timmiati S., Lim K.L., Yaakob Z., Kamaruddin N., The L.P. // Mater. Renew. Sustain. Energy. 2020. V. 9. P. 1–18. https://doi.org/10.1007/s40243-020-00167-5
4. Torres D., Pinilla J.L., Suelves I. // Catalysts. 2018. V. 8. P. 1-15. https://doi.org/10.3390/catal8080300
5. Karimi E.Z., Khaki J.V., Zebarjad S.M., Bataev I.A., Bannov A.G. // Bulletin of Materials Science. 2014. V. 37. № 3. P. 1-8. https://doi.org/10.1007/s12034-014-0041-2
6. Konno K., Onoe K., Takiguchi Y., Yamaguchi T. // Green and Sustainable Chemistry. 2013. V. 3. № 1. P. 19-25. https://doi.org/10.4236/gsc.2013.31004
7. Lapekin N.I., Kurmashov P.B., Larina T.V., Chesalov Y.A., Kurdyumov D.S., Ukhina A.V., Maksimovskiy E.A., Ishchenko A.V., Sysoev V.I., Bannov A.G. // Chemosensors. 2023. V. 11. № 7. P. 381. https://doi.org/10.3390/chemosensors11070381
8. Almiron J., Alcazar H., Churata R, AnascoR.C., Francine R., Ziouche K., Chicot D. // Mater. Res. Express. 2018. V. 5. № 12. P. 381. https://doi.org/10.1088/2053-1591/aadeb2
9. Pervikov A.V., Pustovalov A.V., Afonnikova S.D., Bauman Y.I., Mishakov I.V., Vedyagin A.A. // Powder Technol. 2023. V. 415. P. 118164. https://doi.org/10.1016/j.powtec.2022.118164
10. Стрельцов И.А., Винокурова О.Б., Токарева И.В., Мишаков И.В., Исупов В.П., Шубин Ю.В., Ведягин А.А. // Катализ в промышленности. 2014. № 2. С. 59-65.
11. Agrafonov Y.V., Petrushin I.S., Prosekin M.Y., Prosekina I.G., Rzechizkii A.E. // Bulletin of the Russian Academy of Sciences Physics. 2007. V. 71 № 2. P. 175-177. https://doi.org/10.3103/S1062873807020074
12. Cuervo M.R., Asedegbega-Nieto E., Diaz E., Vega A., Ordonez S., Castillejos-Lopez E., Rodriguez-Ramos I. // J. Chromatogr. A. 2008. V. 1188. № 2. P. 264-273. https://doi.org/10.1016/j.chroma.2008.02.061
13. Bong H.K., Pestov S.M., Flid V.R., Karaeva A.R. Peshnev B.V. // Open J. Appl. Sci. 2017. V. 7. № 12. P. 720-728. https://doi.org/10.4236/ojapps.2017.712051
14. Gudyma T.S., Krutskii Y.L., Maksimovskiy E.A., Cherkasova N.Y., Lapekin N.I., Larina T.V. // Powder Metallurgy аnd Functional Coatings. 2023. V. 17. № 2. P. 35-45. https://doi.org/10.17073/1997-308X-2023-2-35-45
15. Dik D.V., Gudyma T.S., Filippov A.A., Fomin V.M., Krutskii Yu.L. // J. Appl. Mech. Tech. Phys. 2024. V. 65. № 2. P. 249-256. https://doi.org/10.1134/S0021894424020068
16. Bannov A.G., Popov M.V., Brester A.E., Kurmashov P.B. // Micromachines. 2021. V. 12. № 2. P. 186. https://doi.org/10.3390/mi12020186
17. Yu Y., Xue S., Zhao C., Barnych B., Sun G. // Appl. Surf. Sci. 2022. V. 582. № 1. P. 152392. https://doi.org/10.1016/j.apsusc.2021.152392
18. Zhao Y., Wang X., Lai C., He G., Zhang L., Fong H., Zhu Z. // RSC Advances. 2012. V. 2. № 27. P. 10195-10199. https://doi.org/10.1039/c2ra21338a
19. Chesnokov V.V., Chichkan A.S. // Int. J. Hydrogen Energy. 2009. V. 34. № 7. P. 2979-2985. https://doi.org/10.1016/j.ijhydene.2009.01.074
20. Pourdelan H., Alavi M.S., Rezaei M., Akbari E. // Catal. Letters. 2023. V. 153. № 10. P 3759-3173. https://doi.org/10.1007/s10562-022-04175-0
21. Патент RU 2722298, опубл. 28.05.2020
22. Ferk G., Stergar J., Drofenik M., Makovec D., Hamler A., Jaglicic Z., Ban I. // Materials Letters. 2014. V. 124. P. 39–42. https://doi.org/10.1016/j.matlet.2014.03.030
23. Gulyaeva Y.K., Alekseeva M.V., Bulavchenko O.A., Kremneva A., Saraev A., Gerasimov E., Selishcheva S., Kaichev V., Yakovlev V. // Nanomaterials. 2021. V. 11. № 8. P. 2017. https://doi.org/10.3390/nano11082017
24. Wang D., Ran S., Shen L., Sun H., Huang Q. // J. Eur. Ceram. Soc. V. 35. № 3. P. 1107–1112. https://doi.org/10.1016/j.jeurceramsoc.2014.10.018
25. Pudukudy M., Yaakob Z., Kadier A., Takriff M.S. // Int. J. Hydrogen Energy. 2017. V. 42. № 26. P. 16495–16513. https://doi.org/10.1016/j.ijhydene.2017.04.223
26. Veselov G.B., Afonnikova S.D., Mishakov I.V., Vedyagin A.A. // J. Sol-Gel Sci. Technol. 2024. V. 109. P 859–877. https://doi.org/10.1007/s10971-024-06336-6
27. Гаврилова Н.Н., Либерман Е.Ю., Яровая О.В., Кошкин А.Г., Назаров В.В., Михайличенко А.И. // Катализ в промышленности. 2012. № 2. С. 48–55.
28. Naghash A.R., Xu Z., Etsell T.H. // Chem. Mater. 2005 . V. 17. № 4. Р. 815–821. https://doi.org/10.1021/cm048476v
29. Nimse P., Lokhande R.S., Jaybhaye S. // Int. J. Creat. Res. Thoughts. 2023. V. 11. № 4. P. 39-44. https://doi.org/10.1729/Journal.34166
30. Ashik U.P.M., Wan Daud W.M.A. // RSC Advances. 2015. V. 82. P. 1-26.
31. Seong I.H., Kang S.C., Lee J.D. // Res. Chem. Intermed. 2024.
32. V. 50. P. 2841–2858 https://doi.org/10.21203/rs.3.rs-3868859/v1
33. Hantoko D., Khan W.U., Osman A.I., Nasr M., Rashwan A.K., Gambo Y., Shoaibi A.A., Chandrasekar S., Hossain M. // Environ. Chem. Lett. 2024. V. 22. № 4. P. 1623–1663. https://doi.org/10.1007/s10311-024-01732-4
34. Alwan B.A.A., Shah M., Danish M., Mesfer M.K.A., Khan M.I., Natarajan V. // J. Indian Chem. 2022. V. 99. № 4 P. 100393. https://doi.org/10.1016/j.jics.2022.100393
35. Kurmashov P.B., Ukhina A.V., Manakhov A., Ishchenko A.V., Maksimovskii E.A., Bannov A.G. // Applied Sciences. 2023. V. 13. № 6. P. 3962. https://doi.org/ 10.3390/app13063962
36. Kumar A., Cross A., Manukyan K., Bhosale R., Broeke L.J.P., Miller J.T., Mukasyan A.S., Wolf E. // Chem. Eng. J. 2015. V. 278. P. 46–54. https://doi.org/10.1016/j.cej.2015.01.012
37. Kuvshinov D.G., Kurmashov P.B., Bannov A.G., Popov M.V.,
38. Kuvshinov G. // Int. J. Hydrogen Energy. 2019. V.44. № 31. P. 16271–16286. https://doi.org/10.1016/j.ijhydene.2019.04.179
39. Kurmashov P.B., Timofeev V.S., Ukhina A.V., Ishchenko A.V., Larina T.V., Chesalov Y.A., Tan L., Chen Y., Maksimovskiy E.A., Bannov A.G. // Int. J. Hydrogen Energy. 2024. V. 89. P. 1342–1353. https://doi.org/10.1016/j.ijhydene.2024.09.254
40. Afonnikova S.D., Veselov G.B., Bauman Y.I., Gerasimov E.Y., Shubin Y.V., Mishakov I.V., Vedyagin A.A. // J. Compos. Sci. 2023. V.7. № 6. P.238. https://doi.org/10.3390/jcs7060238
41. Afonnikova S.D., Bauman Y.I., Stoyanovskii V.O., Volochaev M.N., Mishakov I.V., Vedyagin A.A. // C-J. Carbon Res. 2023. V. 9. №. 3. P. 77. https://doi.org/10.3390/c9030077
42. Yao D., Haiping Y., Chen H., Williams P.T. // Appl. Catal. B Environ. 2018. V. 239. P. 565–577. https://doi.org/ 10.1016/j.apcatb.2018.07.075
43. Kruissink E.C., Reijen L.L. Ross J.R.H. // J. Chem. Soc., Faraday Trans. 1. 1989. V. 85. P. 649-663. https://doi.org/10.1039/F198985FX045
44. Perez-Lopez O.W., Senger A., Marcilio N.R., Lansarin M.A. // Appl. Catal. A: Gen. 2006. V. 303. № 2. P. 234–244. https://doi.org/10.1016/j.apcata.2006.02.024
45. Shen Y., Lua. C.A. // RSC Adv. 2014. V. 4. № 79. P. 42159–42167. https://doi.org/10.1039/C4RA04379K
46. Prakash A.S., Khadar A.M.A., Patil K.C., Hegde M.S. // J. mater. synth. process. 2002. V. 10. № 3. P. 135-141. https://doi.org/10.1023/A:1021986613158
47. Mukasyan A S, Epstein P.S., Dinka P. // Proc. Combust. Inst. 2007. V. 31. № 2. P. 1789–1795. https://doi.org/10.1016/j.proci.2006.07.052
48. Kurmashov Р.В., Popov M.V., Brester A.E., Ukhina A.V., Bannov A.G. // Doklady Chemistry. 2023. V. 511. № 2. P. 209–216. https://doi.org/10.1134/S0012500823600426
49. Zhuravlev V.D., Bamburov V.G., Beketov A.R., Perelyaeva L.A., Baklanova I.V., Sivtsova O.V., Vasil'ev V.G., Vladimirova E.V., Shevchenko V.G., Grigorov I.G. // Ceram. Int. V. 39. № 2. Р. 1379–1384. https://doi.org/10.1016/j.ceramint.2012.07.078
50. Tahmasebi K., Paydar M.H. // Mater. Chem. Phys. 2008. V. 109, № 1, P. 156-163. https://doi.org/10.1016/j.matchemphys.2007.11.009
51. Fan Z., Weng W., Zhou J., Gu D., Xiao W. // J. Energy Chem. 2021. V. 58. P. 415–430. https://doi.org/10.1016/j.jechem.2020.10.049
52. Wang I.-W., Dagle R., Khan T.S., Lopez-Ruiz J.A., Kovarik L., Jiang Y., Xu M., Wang Y., Changle J., Davidson, S.D., Tavadze P., Li L., Hu J. // Catal. Sci. Technol. 2021. V. 11. № 14. https://doi.org/10.1039/D1CY00287B
53. Smirnov A.A., Khromova S.A., Bulavchenko O.A., Kaichev V.V., Saraev A.A., Reshetnikov S.I., Bykova M.V., Trusov L.I., Yakovlev V.A. // Kinetics and Catalysis. 2014. V. 55. № 1. P. 72–81. https://doi.org/10.1134/S0023158414010145
54. Седакова В.А., Громова Е.С. // Вестник фармации. 2011. № 4. С. 17-22.
55. de Menezes B.R.C., Ferreira F.V., Silva B.C., Simonetti E.A.N., Bastos T.M., Cividanes L.S., Thim G.P. // J. Mater. Sci. 2018. V. 53. P. 14311–14327. https://doi.org/10.1007/s10853-018-2627-3
56. Threlfall T. // Vib. Spectrosc. 2022. V. 121. P. 103386.
57. Factorovich M., Guz L., Candal R. // Adv. Phys. Chem. V. 2011. P. 1-8. https://doi.org/10.1155/2011/821204
58. Duan Q., Cao H., Li X., Sun J. // Process Saf. Environ. Prot. 2023. V. 171. P. 482–892. https://doi.org/10.1016/j.psep.2023.01.032
59. Mojet B.L., Ebbesen S.D., Lefferts L. // Chem. Soc. Rev. 2010. V. 39. № 12. P. 4643–55. https://10.1039/c0cs00014k
60. Cunha A.F., Orfao J.J.M., Figueiredo J.L. // Int. J. Hydrog. Energy. 2009. V. 34 P. 4763–4772. https://doi.org/10.1016/j.ijhydene.2009.03.040
Рецензия
Для цитирования:
Курмашов П.Б., Гудыма Т.С., Головахин В., Шишин А.А., Ухина А.В., Максимовский Е.А., Ищенко А.В., Баннов А.Г. Синтез Ni-Cu/Al2O3-катализаторов разложения метана методом горения с использованием топливных добавок. Катализ в промышленности. 2025;25(5):24-38. https://doi.org/10.18412/1816-0387-2025-5-24-38
For citation:
Kurmashov P.B., Gudyma Т.S., Golovakhin V., Shishin А.А., Ukhina А.V., Maximovskiy Е.А., Ishchenko А.V., Bannov А.G. Application of organic reducing agents for the synthesis of Ni-Cu/Al2O3 catalysts by solution combustion method. Kataliz v promyshlennosti. 2025;25(5):24-38. (In Russ.) https://doi.org/10.18412/1816-0387-2025-5-24-38