

High-Performance PdZn and PdAg Catalytic Films for the Semihydrogenation of 2-Methyl-3-Butyn-2-ol in a Flow Microreactor
https://doi.org/10.18412/1816-0387-2025-5-46-58
Abstract
Synthesizing an active, selective, and stable catalytic coating is a challenging task for the semihydrogenation of alkenols in a flow microreactor, which offers a potentially effective strategy for alkenol production in fine organic synthesis. In this study, PdMe/TiO2 (Me = Zn, Ag) catalytic films were prepared using a simple and efficient template sol-gel method and used in the semihydrogenation of 2-methyl-3-butyn-2-ol. The prepared bimetallic PdMe/TiO2 (Me = Zn, Ag) catalytic films demonstrated high catalytic selectivity due to the formation of PdZn and PdAg alloy nanoparticles (NPs). The surface area of the PdAg active site changes under the reaction conditions. The PdZn film demonstrates better catalytic efficiency. Doping the support with zinc increases the selectivity and stability of the films. Analysis of X-ray photoelectron spectra showed that the zinc-doped PdZn/Ti0.8Zn0.2O1.8 film has a higher concentration of PdZn active sites and better oxidation stability than PdZn/TiO2. The PdAg/TiO2 and PdZn/Ti0.8Zn0.2O1.8 catalytic films demonstrated high stability during long-term testing.
About the Authors
L. B. OkhlopkovaRussian Federation
I. P. Prosvirin
Russian Federation
S. R. Khairulin
Russian Federation
References
1. Bonrath, W.; Medlock, J.; Schutz, J.; Wustenberg, B.; Netscher, T. Hydrogenation in the Vitamins and Fine Chemicals Industry – An Overview. In Hydrogenation; InTech, 2012; pp. 69–90.
2. Jiang, Y.; Yu, X.; Ji, Y.; Jiang, X.; Guo, Y.; Li, T.; Gao, L.; Lang, R.; Fang, Y.; Qiao, B.; et al. Direct Synthesis of a Disinfectant with Fresh Scent of Green Plants by Semi-Hydrogenation of Alkynol on Pd Single-Atom Catalysts. Nano Res. 2024, 17, 3872–3878, doi:10.1007/s12274-023-6371-x.
3. Lindlar, H.; Dubuis, R. Palladium Catalyst for Partial Reduction of Acetylenes. Org. Synth. 1966, 46, 89, doi:10.15227/orgsyn.046.0089.
4. Cherkasov, N.; Ibhadon, A.O.; McCue, A.J.; Anderson, J.A.; Johnston, S.K. Palladium–Bismuth Intermetallic and Surface-Poisoned Catalysts for the Semi-Hydrogenation of 2-Methyl-3-Butyn-2-Ol. Appl. Catal. A Gen. 2015, 497, 22–30, doi:10.1016/j.apcata.2015.02.038.
5. Semagina, N.; Grasemann, M.; Xanthopoulos, N.; Renken, A.; Kiwi-Minsker, L. Structured Catalyst of Pd/ZnO on Sintered Metal Fibers for 2-Methyl-3-Butyn-2-Ol Selective Hydrogenation. J. Catal. 2007, 251, 213–222, doi:10.1016/j.jcat.2007.06.028.
6. Mao, S.; Zhao, B.; Wang, Z.; Gong, Y.; Lü, G.; Ma, X.; Yu, L.; Wang, Y. Tuning the Catalytic Performance for the Semi-Hydrogenation of Alkynols by Selectively Poisoning the Active Sites of Pd Catalysts. Green Chem. 2019, 21, 4143–4151, doi:10.1039/C9GC01356C.
7. Ye, C.; Chen, X.; Li, S.; Feng, B.; Fu, Y.; Zhang, F.; Chen, D.-L.; Zhu, W. PdZn Intermetallic Compound Stabilized on ZnO/Nitrogen-Decorated Carbon Hollow Spheres for Catalytic Semihydrogenation of Alkynols. Nano Res. 2022, 15, 3090–3098, doi:10.1007/s12274-021-3971-1.
8. Cherkasov, N.; Bai, Y.; Rebrov, E. Process Intensification of Alkynol Semihydrogenation in a Tube Reactor Coated with a Pd/ZnO Catalyst. Catalysts 2017, 7, 1–16, doi:10.3390/catal7120358.
9. Cherkasov, N.; Al-Rawashdeh, M.; Ibhadon, A.; Rebrov, E. Scale up Study of Capillary Microreactors in Solvent-Free Semihydrogenation of 2‐methyl‐3‐butyn‐2‐ol. Catal. Today 2016, 273, 205–212, doi:10.1016/j.cattod.2016.03.028.
10. Mashkovsky, I.S.; Markov, P.V.; Rassolov, A.V.; Patil, E.D.; Stakheev, A.Y. Progress in Single-Atom Methodology in Modern Catalysis. Russ. Chem. Rev. 2023, 92, 5087, doi:10.59761/RCR5087.
11. Jin, Y.; Datye, A.K.; Rightor, E.; Gulotty, R.; Waterman, W.; Smith, M.; Holbrook, M.; Maj, J.; Blackson, J. The Influence of Catalyst Restructuring on the Selective Hydrogenation of Acetylene to Ethylene. J. Catal. 2001, 203, 292–306, doi:10.1006/jcat.2001.3347.
12. Pei, G.X.; Liu, X.Y.; Wang, A.; Lee, A.F.; Isaacs, M.A.; Li, L.; Pan, X.; Yang, X.; Wang, X.; Tai, Z.; et al. Ag Alloyed Pd Single-Atom Catalysts for Efficient Selective Hydrogenation of Acetylene to Ethylene in Excess Ethylene. ACS Catal. 2015, 5, 3717–3725, doi:10.1021/acscatal.5b00700.
13. Li, X.-T.; Chen, L.; Shang, C.; Liu, Z.-P. In Situ Surface Structures of PdAg Catalyst and Their Influence on Acetylene Semihydrogenation Revealed by Machine Learning and Experiment. J. Am. Chem. Soc. 2021, 143, 6281–6292, doi:10.1021/jacs.1c02471.
14. Smirnova, N.S.; Markov, P. V.; Baeva, G.N.; Rassolov, A. V.; Mashkovsky, I.S.; Bukhtiyarov, A. V.; Prosvirin, I.P.; Panafidin, M.A.; Zubavichus, Y. V.; Bukhtiyarov, V.I.; et al. CO-Induced Segregation as an Efficient Tool to Control the Surface Composition and Catalytic Performance of PdAg3/Al2O3 Catalyst. Mendeleev Commun. 2019, 29, 547–549, doi:10.1016/j.mencom.2019.09.023.
15. Chai, S.; Gao, D.; Xia, J.; Yang, Y.; Wang, X. Facile Synthesis of Palladium-Silver Dilute Alloy Catalyst for Acetylene Hydrogenation. ChemCatChem 2023, 15, 1–10, doi:10.1002/cctc.202300217.
16. Mei, D.; Neurock, M.; Smith, C.M. Hydrogenation of Acetylene–Ethylene Mixtures over Pd and Pd–Ag Alloys: First-Principles-Based Kinetic Monte Carlo Simulations. J. Catal. 2009, 268, 181–195, doi:10.1016/j.jcat.2009.09.004.
17. Tanimu, A.; Jaenicke, S.; Alhooshani, K. Heterogeneous Catalysis in Continuous Flow Microreactors: A Review of Methods and Applications. Chem. Eng. J. 2017, 327, 792–821, doi:10.1016/j.cej.2017.06.161.
18. Chen, X.; Shi, C.; Wang, X.-B.; Li, W.-Y.; Liang, C. Intermetallic PdZn Nanoparticles Catalyze the Continuous-Flow Hydrogenation of Alkynols to Cis-Enols. Commun. Chem. 2021, 4, 175, doi:10.1038/s42004-021-00612-0.
19. Kashid, M.N.; Renken, A.; Kiwi-Minsker, L. Microstructured Devices for Chemical Processing; Wiley: Weinheim, Germany, 2014; ISBN 9783527331284.
20. Rebrov, E. V.; Berenguer-Murcia, A.; Skelton, H.E.; Johnson, B.F.G.; Wheatley, A.E.H.; Schouten, J.C. Capillary Microreactors Wall-Coated with Mesoporous Titania Thin Film Catalyst Supports. Lab Chip 2009, 9, 503–506, doi:10.1039/B815716B.
21. Rebrov, E. V.; Klinger, E.A.; Berenguer-Murcia, A.; Sulman, E.M.; Schouten, J.C. Selective Hydrogenation of 2-Methyl-3-Butyne-2-Ol in a Wall-Coated Capillary Microreactor with a Pd25Zn75/TiO2 Catalyst. Org. Process Res. Dev. 2009, 13, 991–998, doi:10.1021/op900085b.
22. Cherkasov, N.; Ibhadon, A.O.; Rebrov, E. V. Novel Synthesis of Thick Wall Coatings of Titania Supported Bi Poisoned Pd Catalysts and Application in Selective Hydrogenation of Acetylene Alcohols in Capillary Microreactors. Lab Chip 2015, 15, 1952–1960, doi:10.1039/C4LC01066C.
23. Okhlopkova, L.B.; Kerzhentsev, M.A.; Ismagilov, Z.R. Capillary Microreactor with a Catalytic Coating Based on Mesoporous Titanium Dioxide for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol. Kinet. Catal. 2016, 57, 501–507, doi:10.1134/S0023158416040091.
24. Okhlopkova, L.B.; Cherepanova, S. V.; Prosvirin, I.P.; Kerzhentsev, M.A.; Ismagilov, Z.R. Semi-Hydrogenation of 2-Methyl-3-Butyn-2-Ol on Pd-Zn Nanoalloys Prepared by Polyol Method: Effect of Composition and Heterogenization. Appl. Catal. A 2018, 549, 245–253, doi:DOI: 10.1016/j.apcata.2017.10.005.
25. Cherkasov, N.; Ibhadon, A.O.; Rebrov, E. V. Solvent-Free Semihydrogenation of Acetylene Alcohols in a Capillary Reactor Coated with a Pd–Bi/TiO2 Catalyst. Appl. Catal. A Gen. 2016, 515, 108–115, doi:10.1016/j.apcata.2016.01.019.
26. Okhlopkova, L.B.; Kravchenko, K.A.; Kerzhentsev, M.A.; Ismagilov, Z.R. Selective Catalytic Hydrogenation of Triple Bonds in Acetylenic Alcohols in a Microcapillary Reactor for Processes of Fine Organic Synthesis. Catal. Ind. 2021, 13, 386–394, doi:10.1134/S2070050421040073.
27. Okhlopkova, L.; Prosvirin, I.; Kerzhentsev, M.; Ismagilov, Z. Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol in Microcapillary Reactor on Supported Intermetallic PdZn Catalyst, Effect of Support Doping on Stability and Kinetic Parameters. Catalysts 2022, 12, 1660, doi:10.3390/catal12121660.
28. Flytzani-Stephanopoulos, M. Supported Metal Catalysts at the Single-Atom Limit – A Viewpoint. Chinese J. Catal. 2017, 38, 1432–1442, doi:10.1016/S1872-2067(17)62886-9.
29. Liu, J. Catalysis by Supported Single Metal Atoms. ACS Catal. 2017, 7, 34–59, doi:10.1021/acscatal.6b01534.
30. Dominguez-Dominguez, S.; Berenguer-Murcia, A.; Cazorla-Amoros, D.; Linares-Solano, A. Semihydrogenation of Phenylacetylene Catalyzed by Metallic Nanoparticles Containing Noble Metals. J. Catal. 2006, 243, 74–81, doi:10.1016/j.jcat.2006.06.027.
31. Okhlopkova, L.B.; Kerzhentsev, M.A.; Tuzikov, F. V.; Larichev, Y. V.; Prosvirin, I.P.; Ismagilov, Z.R. Palladium–Zinc Catalysts on Mesoporous Titania Prepared by Colloid Synthesis. I. Size Control Synthesis of PdZn Nanoclusters by a Polyol Method. J. Nanoparticle Res. 2012, 14, 1089, doi:10.1007/s11051-012-1089-9.
32. Lu, P.; Teranishi, T.; Asakura, K.; Miyake, M.; Toshima, N. Polymer-Protected Ni/Pd Bimetallic Nano-Clusters: Preparation, Characterization and Catalysis for Hydrogenation of Nitrobenzene. J. Phys. Chem. B 1999, 103, 9673–9682, doi:10.1021/jp992177p.
33. Okhlopkova, L.B.; Matus, E. V.; Ismagilov, I.Z.; Kerzhentsev, M.A.; Prosvirin, I.P.; Ismagilov, Z.R. Synthesis of Mesoporous Bimetallic Pt-Sn Catalytic Coatings from Polynuclear Precursors for Fine Organic Synthesis Processes. J. Struct. Chem. 2013, 54, 1034–1043, doi:10.1134/S0022476613060061.
34. Scofield, J.H. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 EV. J. Electron Spectros. Relat. Phenomena 1976, 8, 129–137, doi:10.1016/0368-2048(76)80015-1.
35. Haverkamp, V.; Hessel, V.; Löwe, H.; Menges, G.; Warnier, M.J.F.; Rebrov, E. V.; de Croon, M.H.J.M.; Schouten, J.C.; Liauw, M.A. Hydrodynamics and Mixer-Induced Bubble Formation in Micro Bubble Columns with Single and Multiple-Channels. Chem. Eng. Technol. 2006, 29, 1015–1026, doi:10.1002/ceat.200600180.
36. Chisholm, D. A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow. Int. J. Heat Mass Transf. 1967, 10, 1767–1778, doi:10.1016/0017-9310(67)90047-6.
37. Lockhart, R.W.; Martinelli, R.C. Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes. Chem. Eng. Prog 1949, 45, 39–48.
38. Jia, C.-J.; Schüth, F. Colloidal Metal Nanoparticles as a Component of Designed Catalyst. Phys. Chem. Chem. Phys. 2011, 13, 2457, doi:10.1039/c0cp02680h.
39. Nikoshvili, L.Z.; Makarova, A.S.; Lyubimova, N.A.; Bykov, A. V.; Sidorov, A.I.; Tyamina, I.Y.; Matveeva, V.G.; Sulman, E.M. Kinetic Study of Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol over Pd-Containing Hypercrosslinked Polystyrene. Catal. Today 2015, 256, 231–240, doi:10.1016/j.cattod.2015.02.033.
40. Okhlopkova, L.; Prosvirin, I.; Khairulin, S. Semihydrogenation of 2-Methyl-3-Butyn-2-Ol over PdxAg1-x/TiO2 Films in Microcapillary Reactor: Effect of Active Component Composition. Inorg. Chem. Commun. 2025, 173, 113781, doi:10.1016/j.inoche.2024.113781.
41. E. V. Khramov Formation of Catalytically Active Nanoalloys and Intermetallic Compounds from Heterometallic Palladium Complexes; Institute of General and Inorganic Chemistry named after. N.S. Kurnakov RAS: Moscow, 2018;
42. Engels, V.; Jefferson, D.A.; Benaskar, F.; Thüne, P.C.; Berenguer-Murcia, A.; Johnson, B.F.G.; Wheatley, A.E.H. Nanoparticulate PdZn—Pathways towards the Synthetic Control of Nanosurface Properties. Nanotechnology 2011, 22, 205701, doi:10.1088/0957-4484/22/20/205701.
43. Rameshan, C.; Stadlmayr, W.; Weilach, C.; Penner, S.; Lorenz, H.; Hävecker, M.; Blume, R.; Rocha, T.; Teschner, D.; Knop-Gericke, A.; et al. Subsurface-Controlled CO2 Selectivity of PdZn near-Surface Alloys in H2 Generation by Methanol Steam Reforming. Angew. Chemie - Int. Ed. 2010, 49, 3224–3227, doi:10.1002/anie.200905815.
44. Holzapfel, H.H.; Wolfbeisser, A.; Rameshan, C.; Weilach, C.; Rupprechter, G. PdZn Surface Alloys as Models of Methanol Steam Reforming Catalysts: Molecular Studies by LEED, XPS, TPD and PM-IRAS. Top. Catal. 2014, 57, 1218–1228, doi:10.1007/s11244-014-0295-3.
45. Mashkovsky, I.S.; Markov, P. V; Bragina, G.O.; Baeva, G.N.; Bukhtiyarov, A. V; Prosvirin, I.P.; Bukhtiyarov, V.I.; Yu Stakheev, A. Formation of Supported Intermetallic Nanoparticles in the Pd–Zn/α-Al 2 O 3 Catalyst. Kinet. Catal. 2017, 58, 499–507, doi:10.1134/S0023158417040127.
46. Huang, Y.-F.; Wu, P.; Tang, J.-P.; Yang, J.; Li, J.; Chen, S.; Zhao, X.-L.; Chen, C.; Zhang, B.-W.; Ma, Y.-Y.; et al. MOF-Derived Cu Embedded into N-Doped Mesoporous Carbon as a Robust Support of PdAu Nanocatalysts for Ethanol Electrooxidation. Rare Met. 2024, 43, 1083–1094, doi:10.1007/s12598-023-02512-9.
47. Zhu, L.; Zhang, H.; Zhu, H.; Fu, H.; Kroner, A.; Yang, Z.; Ye, H.; Chen, B.H.; Luque, R. Controlling Nanostructures of PtNiCo/C Trimetallic Nanocatalysts and Relationship of Structure-Catalytic Performance for Selective Hydrogenation of Nitroarenes. J. Catal. 2022, 413, 978–991, doi:10.1016/j.jcat.2022.08.012.
48. Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A.; et al. How to Control the Selectivity of Palladium-Based Catalysts in Hydrogenation Reactions: The Role of Subsurface Chemistry. ChemCatChem 2012, 4, 1048–1063, doi:10.1002/cctc.201200100.
49. Cherkasov, N.; Denissenko, P.; Deshmukh, S.; Rebrov, E. V. Gas-Liquid Hydrogenation in Continuous Flow – The Effect of Mass Transfer and Residence Time in Powder Packed-Bed and Catalyst-Coated Reactors. Chem. Eng. J. 2020, 379, 122292, doi:10.1016/j.cej.2019.122292.
50. van Spronsen, M.A.; Daunmu, K.; O’Connor, C.R.; Egle, T.; Kersell, H.; Oliver-Meseguer, J.; Salmeron, M.B.; Madix, R.J.; Sautet, P.; Friend, C.M. Dynamics of Surface Alloys: Rearrangement of Pd/Ag(111) Induced by CO and O2. J. Phys. Chem. C 2019, 123, 8312–8323, doi:10.1021/acs.jpcc.8b08849.
Review
For citations:
Okhlopkova L.B., Prosvirin I.P., Khairulin S.R. High-Performance PdZn and PdAg Catalytic Films for the Semihydrogenation of 2-Methyl-3-Butyn-2-ol in a Flow Microreactor. Kataliz v promyshlennosti. 2025;25(5):46-58. (In Russ.) https://doi.org/10.18412/1816-0387-2025-5-46-58