

Высокопроизводительные каталитические пленки PdZn и PdAg для полугидрирования 2-метил-3-бутин-2-ола в проточном микрореакторе
https://doi.org/10.18412/1816-0387-2025-5-46-58
Аннотация
Синтез активного, селективного и стабильного каталитического покрытия является сложной задачей для полугидрирования алкенолов в проточном микрореакторе, что является потенциально эффективной стратегией для производства алкенолов в тонком органическом синтезе. В этой работе каталитические пленки PdMe/TiO2 (Me = Zn, Ag) были получены с помощью простого и эффективного темплатного золь-гель метода и использованы в полугидрировании 2-метил-3-бутин-2-ола. Приготовленные биметаллические каталитические пленки PdMe/TiO2 (Me = Zn, Ag) показали высокую каталитическую селективность благодаря образованию сплавных наночастиц (НЧ) PdZn и PdAg. Поверхность активного центра PdAg изменяется в условиях реакции. PdZn-пленка демонстрирует лучшую каталитическую эффективность. Допирование носителя цинком увеличивает селективность и стабильность пленок. Анализ рентгеновских фотоэлектронных спектров показал, что допированная цинком пленка PdZn/Ti0,8Zn0,2O1,8 имеет более высокую концентрацию активных центров PdZn и лучшую устойчивость к окислению, чем PdZn/TiO2. Каталитические пленки PdAg/TiO2 и PdZn/Ti0,8Zn0,2O1,8 продемонстрировали высокую стабильность при длительных испытаниях.
Об авторах
Л. Б. ОхлопковаРоссия
И. П. Просвирин
Россия
С. Р. Хайрулин
Россия
Список литературы
1. Bonrath, W.; Medlock, J.; Schutz, J.; Wustenberg, B.; Netscher, T. Hydrogenation in the Vitamins and Fine Chemicals Industry – An Overview. In Hydrogenation; InTech, 2012; pp. 69–90.
2. Jiang, Y.; Yu, X.; Ji, Y.; Jiang, X.; Guo, Y.; Li, T.; Gao, L.; Lang, R.; Fang, Y.; Qiao, B.; et al. Direct Synthesis of a Disinfectant with Fresh Scent of Green Plants by Semi-Hydrogenation of Alkynol on Pd Single-Atom Catalysts. Nano Res. 2024, 17, 3872–3878, doi:10.1007/s12274-023-6371-x.
3. Lindlar, H.; Dubuis, R. Palladium Catalyst for Partial Reduction of Acetylenes. Org. Synth. 1966, 46, 89, doi:10.15227/orgsyn.046.0089.
4. Cherkasov, N.; Ibhadon, A.O.; McCue, A.J.; Anderson, J.A.; Johnston, S.K. Palladium–Bismuth Intermetallic and Surface-Poisoned Catalysts for the Semi-Hydrogenation of 2-Methyl-3-Butyn-2-Ol. Appl. Catal. A Gen. 2015, 497, 22–30, doi:10.1016/j.apcata.2015.02.038.
5. Semagina, N.; Grasemann, M.; Xanthopoulos, N.; Renken, A.; Kiwi-Minsker, L. Structured Catalyst of Pd/ZnO on Sintered Metal Fibers for 2-Methyl-3-Butyn-2-Ol Selective Hydrogenation. J. Catal. 2007, 251, 213–222, doi:10.1016/j.jcat.2007.06.028.
6. Mao, S.; Zhao, B.; Wang, Z.; Gong, Y.; Lü, G.; Ma, X.; Yu, L.; Wang, Y. Tuning the Catalytic Performance for the Semi-Hydrogenation of Alkynols by Selectively Poisoning the Active Sites of Pd Catalysts. Green Chem. 2019, 21, 4143–4151, doi:10.1039/C9GC01356C.
7. Ye, C.; Chen, X.; Li, S.; Feng, B.; Fu, Y.; Zhang, F.; Chen, D.-L.; Zhu, W. PdZn Intermetallic Compound Stabilized on ZnO/Nitrogen-Decorated Carbon Hollow Spheres for Catalytic Semihydrogenation of Alkynols. Nano Res. 2022, 15, 3090–3098, doi:10.1007/s12274-021-3971-1.
8. Cherkasov, N.; Bai, Y.; Rebrov, E. Process Intensification of Alkynol Semihydrogenation in a Tube Reactor Coated with a Pd/ZnO Catalyst. Catalysts 2017, 7, 1–16, doi:10.3390/catal7120358.
9. Cherkasov, N.; Al-Rawashdeh, M.; Ibhadon, A.; Rebrov, E. Scale up Study of Capillary Microreactors in Solvent-Free Semihydrogenation of 2‐methyl‐3‐butyn‐2‐ol. Catal. Today 2016, 273, 205–212, doi:10.1016/j.cattod.2016.03.028.
10. Mashkovsky, I.S.; Markov, P.V.; Rassolov, A.V.; Patil, E.D.; Stakheev, A.Y. Progress in Single-Atom Methodology in Modern Catalysis. Russ. Chem. Rev. 2023, 92, 5087, doi:10.59761/RCR5087.
11. Jin, Y.; Datye, A.K.; Rightor, E.; Gulotty, R.; Waterman, W.; Smith, M.; Holbrook, M.; Maj, J.; Blackson, J. The Influence of Catalyst Restructuring on the Selective Hydrogenation of Acetylene to Ethylene. J. Catal. 2001, 203, 292–306, doi:10.1006/jcat.2001.3347.
12. Pei, G.X.; Liu, X.Y.; Wang, A.; Lee, A.F.; Isaacs, M.A.; Li, L.; Pan, X.; Yang, X.; Wang, X.; Tai, Z.; et al. Ag Alloyed Pd Single-Atom Catalysts for Efficient Selective Hydrogenation of Acetylene to Ethylene in Excess Ethylene. ACS Catal. 2015, 5, 3717–3725, doi:10.1021/acscatal.5b00700.
13. Li, X.-T.; Chen, L.; Shang, C.; Liu, Z.-P. In Situ Surface Structures of PdAg Catalyst and Their Influence on Acetylene Semihydrogenation Revealed by Machine Learning and Experiment. J. Am. Chem. Soc. 2021, 143, 6281–6292, doi:10.1021/jacs.1c02471.
14. Smirnova, N.S.; Markov, P. V.; Baeva, G.N.; Rassolov, A. V.; Mashkovsky, I.S.; Bukhtiyarov, A. V.; Prosvirin, I.P.; Panafidin, M.A.; Zubavichus, Y. V.; Bukhtiyarov, V.I.; et al. CO-Induced Segregation as an Efficient Tool to Control the Surface Composition and Catalytic Performance of PdAg3/Al2O3 Catalyst. Mendeleev Commun. 2019, 29, 547–549, doi:10.1016/j.mencom.2019.09.023.
15. Chai, S.; Gao, D.; Xia, J.; Yang, Y.; Wang, X. Facile Synthesis of Palladium-Silver Dilute Alloy Catalyst for Acetylene Hydrogenation. ChemCatChem 2023, 15, 1–10, doi:10.1002/cctc.202300217.
16. Mei, D.; Neurock, M.; Smith, C.M. Hydrogenation of Acetylene–Ethylene Mixtures over Pd and Pd–Ag Alloys: First-Principles-Based Kinetic Monte Carlo Simulations. J. Catal. 2009, 268, 181–195, doi:10.1016/j.jcat.2009.09.004.
17. Tanimu, A.; Jaenicke, S.; Alhooshani, K. Heterogeneous Catalysis in Continuous Flow Microreactors: A Review of Methods and Applications. Chem. Eng. J. 2017, 327, 792–821, doi:10.1016/j.cej.2017.06.161.
18. Chen, X.; Shi, C.; Wang, X.-B.; Li, W.-Y.; Liang, C. Intermetallic PdZn Nanoparticles Catalyze the Continuous-Flow Hydrogenation of Alkynols to Cis-Enols. Commun. Chem. 2021, 4, 175, doi:10.1038/s42004-021-00612-0.
19. Kashid, M.N.; Renken, A.; Kiwi-Minsker, L. Microstructured Devices for Chemical Processing; Wiley: Weinheim, Germany, 2014; ISBN 9783527331284.
20. Rebrov, E. V.; Berenguer-Murcia, A.; Skelton, H.E.; Johnson, B.F.G.; Wheatley, A.E.H.; Schouten, J.C. Capillary Microreactors Wall-Coated with Mesoporous Titania Thin Film Catalyst Supports. Lab Chip 2009, 9, 503–506, doi:10.1039/B815716B.
21. Rebrov, E. V.; Klinger, E.A.; Berenguer-Murcia, A.; Sulman, E.M.; Schouten, J.C. Selective Hydrogenation of 2-Methyl-3-Butyne-2-Ol in a Wall-Coated Capillary Microreactor with a Pd25Zn75/TiO2 Catalyst. Org. Process Res. Dev. 2009, 13, 991–998, doi:10.1021/op900085b.
22. Cherkasov, N.; Ibhadon, A.O.; Rebrov, E. V. Novel Synthesis of Thick Wall Coatings of Titania Supported Bi Poisoned Pd Catalysts and Application in Selective Hydrogenation of Acetylene Alcohols in Capillary Microreactors. Lab Chip 2015, 15, 1952–1960, doi:10.1039/C4LC01066C.
23. Okhlopkova, L.B.; Kerzhentsev, M.A.; Ismagilov, Z.R. Capillary Microreactor with a Catalytic Coating Based on Mesoporous Titanium Dioxide for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol. Kinet. Catal. 2016, 57, 501–507, doi:10.1134/S0023158416040091.
24. Okhlopkova, L.B.; Cherepanova, S. V.; Prosvirin, I.P.; Kerzhentsev, M.A.; Ismagilov, Z.R. Semi-Hydrogenation of 2-Methyl-3-Butyn-2-Ol on Pd-Zn Nanoalloys Prepared by Polyol Method: Effect of Composition and Heterogenization. Appl. Catal. A 2018, 549, 245–253, doi:DOI: 10.1016/j.apcata.2017.10.005.
25. Cherkasov, N.; Ibhadon, A.O.; Rebrov, E. V. Solvent-Free Semihydrogenation of Acetylene Alcohols in a Capillary Reactor Coated with a Pd–Bi/TiO2 Catalyst. Appl. Catal. A Gen. 2016, 515, 108–115, doi:10.1016/j.apcata.2016.01.019.
26. Okhlopkova, L.B.; Kravchenko, K.A.; Kerzhentsev, M.A.; Ismagilov, Z.R. Selective Catalytic Hydrogenation of Triple Bonds in Acetylenic Alcohols in a Microcapillary Reactor for Processes of Fine Organic Synthesis. Catal. Ind. 2021, 13, 386–394, doi:10.1134/S2070050421040073.
27. Okhlopkova, L.; Prosvirin, I.; Kerzhentsev, M.; Ismagilov, Z. Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol in Microcapillary Reactor on Supported Intermetallic PdZn Catalyst, Effect of Support Doping on Stability and Kinetic Parameters. Catalysts 2022, 12, 1660, doi:10.3390/catal12121660.
28. Flytzani-Stephanopoulos, M. Supported Metal Catalysts at the Single-Atom Limit – A Viewpoint. Chinese J. Catal. 2017, 38, 1432–1442, doi:10.1016/S1872-2067(17)62886-9.
29. Liu, J. Catalysis by Supported Single Metal Atoms. ACS Catal. 2017, 7, 34–59, doi:10.1021/acscatal.6b01534.
30. Dominguez-Dominguez, S.; Berenguer-Murcia, A.; Cazorla-Amoros, D.; Linares-Solano, A. Semihydrogenation of Phenylacetylene Catalyzed by Metallic Nanoparticles Containing Noble Metals. J. Catal. 2006, 243, 74–81, doi:10.1016/j.jcat.2006.06.027.
31. Okhlopkova, L.B.; Kerzhentsev, M.A.; Tuzikov, F. V.; Larichev, Y. V.; Prosvirin, I.P.; Ismagilov, Z.R. Palladium–Zinc Catalysts on Mesoporous Titania Prepared by Colloid Synthesis. I. Size Control Synthesis of PdZn Nanoclusters by a Polyol Method. J. Nanoparticle Res. 2012, 14, 1089, doi:10.1007/s11051-012-1089-9.
32. Lu, P.; Teranishi, T.; Asakura, K.; Miyake, M.; Toshima, N. Polymer-Protected Ni/Pd Bimetallic Nano-Clusters: Preparation, Characterization and Catalysis for Hydrogenation of Nitrobenzene. J. Phys. Chem. B 1999, 103, 9673–9682, doi:10.1021/jp992177p.
33. Okhlopkova, L.B.; Matus, E. V.; Ismagilov, I.Z.; Kerzhentsev, M.A.; Prosvirin, I.P.; Ismagilov, Z.R. Synthesis of Mesoporous Bimetallic Pt-Sn Catalytic Coatings from Polynuclear Precursors for Fine Organic Synthesis Processes. J. Struct. Chem. 2013, 54, 1034–1043, doi:10.1134/S0022476613060061.
34. Scofield, J.H. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 EV. J. Electron Spectros. Relat. Phenomena 1976, 8, 129–137, doi:10.1016/0368-2048(76)80015-1.
35. Haverkamp, V.; Hessel, V.; Löwe, H.; Menges, G.; Warnier, M.J.F.; Rebrov, E. V.; de Croon, M.H.J.M.; Schouten, J.C.; Liauw, M.A. Hydrodynamics and Mixer-Induced Bubble Formation in Micro Bubble Columns with Single and Multiple-Channels. Chem. Eng. Technol. 2006, 29, 1015–1026, doi:10.1002/ceat.200600180.
36. Chisholm, D. A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow. Int. J. Heat Mass Transf. 1967, 10, 1767–1778, doi:10.1016/0017-9310(67)90047-6.
37. Lockhart, R.W.; Martinelli, R.C. Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes. Chem. Eng. Prog 1949, 45, 39–48.
38. Jia, C.-J.; Schüth, F. Colloidal Metal Nanoparticles as a Component of Designed Catalyst. Phys. Chem. Chem. Phys. 2011, 13, 2457, doi:10.1039/c0cp02680h.
39. Nikoshvili, L.Z.; Makarova, A.S.; Lyubimova, N.A.; Bykov, A. V.; Sidorov, A.I.; Tyamina, I.Y.; Matveeva, V.G.; Sulman, E.M. Kinetic Study of Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol over Pd-Containing Hypercrosslinked Polystyrene. Catal. Today 2015, 256, 231–240, doi:10.1016/j.cattod.2015.02.033.
40. Okhlopkova, L.; Prosvirin, I.; Khairulin, S. Semihydrogenation of 2-Methyl-3-Butyn-2-Ol over PdxAg1-x/TiO2 Films in Microcapillary Reactor: Effect of Active Component Composition. Inorg. Chem. Commun. 2025, 173, 113781, doi:10.1016/j.inoche.2024.113781.
41. E. V. Khramov Formation of Catalytically Active Nanoalloys and Intermetallic Compounds from Heterometallic Palladium Complexes; Institute of General and Inorganic Chemistry named after. N.S. Kurnakov RAS: Moscow, 2018;
42. Engels, V.; Jefferson, D.A.; Benaskar, F.; Thüne, P.C.; Berenguer-Murcia, A.; Johnson, B.F.G.; Wheatley, A.E.H. Nanoparticulate PdZn—Pathways towards the Synthetic Control of Nanosurface Properties. Nanotechnology 2011, 22, 205701, doi:10.1088/0957-4484/22/20/205701.
43. Rameshan, C.; Stadlmayr, W.; Weilach, C.; Penner, S.; Lorenz, H.; Hävecker, M.; Blume, R.; Rocha, T.; Teschner, D.; Knop-Gericke, A.; et al. Subsurface-Controlled CO2 Selectivity of PdZn near-Surface Alloys in H2 Generation by Methanol Steam Reforming. Angew. Chemie - Int. Ed. 2010, 49, 3224–3227, doi:10.1002/anie.200905815.
44. Holzapfel, H.H.; Wolfbeisser, A.; Rameshan, C.; Weilach, C.; Rupprechter, G. PdZn Surface Alloys as Models of Methanol Steam Reforming Catalysts: Molecular Studies by LEED, XPS, TPD and PM-IRAS. Top. Catal. 2014, 57, 1218–1228, doi:10.1007/s11244-014-0295-3.
45. Mashkovsky, I.S.; Markov, P. V; Bragina, G.O.; Baeva, G.N.; Bukhtiyarov, A. V; Prosvirin, I.P.; Bukhtiyarov, V.I.; Yu Stakheev, A. Formation of Supported Intermetallic Nanoparticles in the Pd–Zn/α-Al 2 O 3 Catalyst. Kinet. Catal. 2017, 58, 499–507, doi:10.1134/S0023158417040127.
46. Huang, Y.-F.; Wu, P.; Tang, J.-P.; Yang, J.; Li, J.; Chen, S.; Zhao, X.-L.; Chen, C.; Zhang, B.-W.; Ma, Y.-Y.; et al. MOF-Derived Cu Embedded into N-Doped Mesoporous Carbon as a Robust Support of PdAu Nanocatalysts for Ethanol Electrooxidation. Rare Met. 2024, 43, 1083–1094, doi:10.1007/s12598-023-02512-9.
47. Zhu, L.; Zhang, H.; Zhu, H.; Fu, H.; Kroner, A.; Yang, Z.; Ye, H.; Chen, B.H.; Luque, R. Controlling Nanostructures of PtNiCo/C Trimetallic Nanocatalysts and Relationship of Structure-Catalytic Performance for Selective Hydrogenation of Nitroarenes. J. Catal. 2022, 413, 978–991, doi:10.1016/j.jcat.2022.08.012.
48. Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A.; et al. How to Control the Selectivity of Palladium-Based Catalysts in Hydrogenation Reactions: The Role of Subsurface Chemistry. ChemCatChem 2012, 4, 1048–1063, doi:10.1002/cctc.201200100.
49. Cherkasov, N.; Denissenko, P.; Deshmukh, S.; Rebrov, E. V. Gas-Liquid Hydrogenation in Continuous Flow – The Effect of Mass Transfer and Residence Time in Powder Packed-Bed and Catalyst-Coated Reactors. Chem. Eng. J. 2020, 379, 122292, doi:10.1016/j.cej.2019.122292.
50. van Spronsen, M.A.; Daunmu, K.; O’Connor, C.R.; Egle, T.; Kersell, H.; Oliver-Meseguer, J.; Salmeron, M.B.; Madix, R.J.; Sautet, P.; Friend, C.M. Dynamics of Surface Alloys: Rearrangement of Pd/Ag(111) Induced by CO and O2. J. Phys. Chem. C 2019, 123, 8312–8323, doi:10.1021/acs.jpcc.8b08849.
Рецензия
Для цитирования:
Охлопкова Л.Б., Просвирин И.П., Хайрулин С.Р. Высокопроизводительные каталитические пленки PdZn и PdAg для полугидрирования 2-метил-3-бутин-2-ола в проточном микрореакторе. Катализ в промышленности. 2025;25(5):46-58. https://doi.org/10.18412/1816-0387-2025-5-46-58
For citation:
Okhlopkova L.B., Prosvirin I.P., Khairulin S.R. High-Performance PdZn and PdAg Catalytic Films for the Semihydrogenation of 2-Methyl-3-Butyn-2-ol in a Flow Microreactor. Kataliz v promyshlennosti. 2025;25(5):46-58. (In Russ.) https://doi.org/10.18412/1816-0387-2025-5-46-58