Development of a technique to increase the service life of the higher paraffin dehydrogenation catalyst on the basis of non-stationary kinetic model of reactor
Abstract
Extending the life of the industrial catalyst is possible by improving
the technological conditions of its operation. This will help eliminate
possible factors deactivation of the catalyst. Feature of the process
of catalytic dehydrogenation of hydrocarbons is unsteady due to the
deactivation of the catalysts.The article presents the results of the
simulation of industrial process catalytic dehydrogenation of higher
alkanes C9–C14 – a key stage in the production of linear alkyl benzene. Described in stages: 1) thermodynamic analysis of the reactions by quantum chemistry methods, 2) estimation of parameters of the kinetic model solution of the inverse kinetic problem, 3) the choice of catalyst deactivation by coke of the equation, 4) development of methods to increase the resources of the dehydrogenation catalyst with time-dependent model based on quantitative records added to the water reactor in the range 470–490 °C. Proposed on the basis of these models, technological system of higher alkanes dehydrogenation allows calculation of the forecast of the reactor under different conditions of water supply. It is shown that when water resource is increasing portions of the catalyst is increased by an average of 20–30 %.
About the Authors
E. N. IvashkinaRussian Federation
E. V. Frantsina
Russian Federation
R. V. Romanovsky
Russian Federation
I. M. Dolganov
Russian Federation
E. D. Ivanchina
Russian Federation
A. V. Kravtsov
Russian Federation
References
1. Слинько М.Г., Тимошенко В.И. // Катализ в промышленности. 2005. № 5. С. 3—9.
2. Lahiri S.К., Khalfe N., Lenka С., Al-Balyaa М. // Нефтегазовые технологии. 2008. № 7. С.71—77.
3. Кравцов А.В., Иванчина Э.Д., Ивашкина Е.Н., Костенко А.В., Юрьев Е.М., Бесков В.С. // Катализ в промышленности. 2008. № 6. С. 41—46.
4. Ивашкина Е.Н., Юрьев Е.М., Иванчина Э.Д., Кравцов А.В., Францина Е.В., Романовский Р.В. // Катализ в промышленности. 2010. № 1. С. 21—26.
5. Слинько М.Г., Сахаровский Ю.А. // Катализ в промышленности. Научно-технические достижения и передовой опыт. 2002. № 1. С. 3—8.
6. Кальнер В.Д. Из истории катализа. Москва: Калвис, 2005. 568 с.
7. Бузько В.Ю., Сухно И.В., Панюшкин В.Т., Рамазанова Д.Н. // Журнал структурной химии. 2005. Т. 46. № 4. С. 618—624.
8. Скарченко В.К. Дегидрирование углеводородов. Киев: Наукова думка, 1981. 328 с.
9. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987. 502 с.
10. Слинько М.Г. // Катализ в промышленности. 2006. № 1. С. 21—27.
11. Островский Н.М. Кинетика дезактивации катализаторов. Москва: Наука, 2001.
12. Буянов Р.А. Закоксовывание катализаторов. Новосибирск: Наука, 1983. 334 c.
13. Pat. 3907921 (US) Water injection in a dehydrogenation process / Hoatson Jr. II, James Erickson Robert Page William R. W. H., 09.23.1975.
14. Pat. 7687676 B1 (US) Dehydrogenation process with water and temperature control / Christopher J. Vogel, Dean E. Rende, Andrea G. Bozzano, Paul G. Wing, 30.03.2010.
15. Мартьянова С.К., Гайдай Н.А., Костюковский М.М., Киперман С.Л., Шашкин Д.П. // Кинетика и катализ. 1982. Том XXIII. Вып. 4. С. 907—912.
Review
For citations:
Ivashkina E.N., Frantsina E.V., Romanovsky R.V., Dolganov I.M., Ivanchina E.D., Kravtsov A.V. Development of a technique to increase the service life of the higher paraffin dehydrogenation catalyst on the basis of non-stationary kinetic model of reactor. Kataliz v promyshlennosti. 2012;(1):40-50. (In Russ.)