Structural and morphological features of Al-SBA-15 composites
https://doi.org/10.18412/1816-0387-2025-6-3-11
Abstract
The study is dedicated to the synthesis and study of the physicochemical properties of a porous catalytic system based on mesoporous mesostructured silicate SBA-15. Aluminosilicate composites with SBA-15 mesostructure were synthesized by the method of co-condensation at a pH ~1.5 and an Al/Si molar ratio ranging from 2.5 to 35%. The obtained aluminosilicates have been characterized using X-ray diffraction, gas adsorption, IR spectroscopy, electron microscopy, and elemental analysis. With an increase in the Al/Si ratio during synthesis, there is a regular decrease in the unit cell parameter from 107.3 to 99.9 Å, specific surface area from 837 to 699 m²/g, and pore volume from 0.86 to 0.62 cm³/g. The incorporation of aluminum into the SBA-15 structure reaches 2.6%. Changes in the composition of the initial mixture significantly affect the morphology of the aluminosilicate particles; in particular, the thickness of the fiber-like particles increases while the length of the fibers remains practically unchanged. The thickened fibers are unstable, and at an Al/Si ratio in the initial composition of 35% mol., the composite particles are noticeably fragmented.
About the Authors
S. A. NovikovaRussian Federation
A. O. Eremina
Russian Federation
S. D. Kirik
Russian Federation
Y. N. Zaiceva
Russian Federation
O. P. Taran
Russian Federation
References
1. Zhao D., Huo Q., Feng J. // Journal of the American Chemical Society. 1998. V. 120. № 24. P. 6024-6036. https://doi.org/10.1021/ja974025i
2. Wei Y., Li Y., Tan Y., Zhou J., Wu Z., Liu Y. // Materials Letters. 2015. V. 141. P. 145-148. https://doi.org/10.1016/j.matlet.2014.11.066
3. Huirache-Acuña R., Nava R., Peza-Ledesma C. L., al e. // Materials. 2013. V. 6. № 9. P. 4139-4167. https://doi.org/10.3390/ma6094139
4. Ramanathan A., Subramaniam B. // Molecules. 2018. V. 23. № 2. P. 263. https://doi.org/10.3390/molecules23020263
5. Wisniewska J., Grzelak K., Huang S.-P., Sobczak I., Yang C.-M., Ziolek M. // Catalysis Today. 2020. V. 356. P. 165-177. https://doi.org/10.1016/j.cattod.2019.05.012
6. Vinu A., Murugesan V., Böhlmann W. // The Journal of Physical Chemistry B. 2004. V. 108. № 31. P. 11496-11505. https://doi.org/10.1021/jp048411f
7. Li Y., Zhang W., Zhang L. // The journal of physical chemistry B. 2004. V. 108. № 28. P. 9739-9744. https://doi.org/10.1021/jp049824j
8. Betiha M. A., Hassan H. M., Al-Sabagh A. M. // Journal of Materials Chemistry. 2012. V. 22. № 34. P. 17551-17559. https://doi.org/10.1039/C2JM32941G
9. Oliveira M. S. M. d., Bieseki L., Alencar A. E. V. d. // Materials Research. 2019. V. 22. № 3. P. e20180657. https://doi.org/10.1590/1980-5373-MR-2018-0657
10. Pinto F. G. H. S., Caldeira V. P. d. S. // Nanomaterials. 2024. V. 14. № 2. P. 208. https://doi.org/10.3390/nano14020208
11. Jing F., Katryniok B., Paul S. // ChemCatChem. 2017. V. 9. № 2. P. 258-262. https://doi.org/10.1002/cctc.201601202
12. Yadav R., Muralidhar A., Shamna A. // Catalysis Letters. 2018. V. 148. P. 1407-1415. https://doi.org/10.1007/s10562-018-2366-8
13. Gajardo J., Colmenares-Zerpa J., Peixoto A. F. // Journal of Porous Materials. 2023. V. 30. № 5. P. 1687-1707. https://doi.org/10.1007/s10934-023-01453-z
14. Tan Y., Li Y., Wei Y. // Catalysis Communications. 2015. V. 67. P. 21-25. https://doi.org/10.1016/j.catcom.2015.03.019
15. Cecilia J., García-Sancho C., Mérida-Robles J. // Journal of Sol-Gel Science and Technology. 2017. V. 83. P. 342-354. https://doi.org/10.1007/s10971-017-4411-2
16. Marinho J. C., de Almeida Barbosa T. L., Rodrigues M. G. F. // Materials Science Forum. 2018. V. 912. P. 39-43. https://doi.org/10.4028/www.scientific.net/MSF.912.39
17. Socci J., Osatiashtiani A., Kyriakou G. // Applied Catalysis A: General. 2019. V. 570. P. 218-227. https://doi.org/10.1016/j.apcata.2018.11.020
18. Zhang Y., Xie X., Yang Y. // Journal of Colloid and Interface Science. 2024. V. 663. P. 749-760. https://doi.org/10.1016/j.jcis.2024.02.180
19. Lin S., Shi L., Carrott M. R. // Microporous and Mesoporous Materials. 2011. V. 142. № 2-3. P. 526-534. https://doi.org/10.1016/j.micromeso.2010.12.043
20. Liu Z., Wei Y., Qi Y., Zhang S., Zhang Y., Liu Z. // Microporous and mesoporous materials. 2006. V. 93. № 1-3. P. 205-211. https://doi.org/10.1016/j.micromeso.2006.02.016
21. Selvam P., Krishna N. V., Viswanathan B. // Journal of the Indian Institute of Science. 2010. V. 90. № 2. P. 271-285.
22. Liu X., Liu N., Li X. // The Journal of Physical Chemistry C. 2023. V. 127. № 13. P. 6446-6455. https://doi.org/10.1021/acs.jpcc.2c07988
23. Babaei Z., Chermahini A. N., Dinari M. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 625. P. 126885. https://doi.org/10.1016/j.colsurfa.2021.126885
24. Aldosari O. F., Alhumaimess M. S., Betiha M. A. // Catalysts. 2023. V. 13. № 11. P. 1395. https://doi.org/10.3390/catal13111395
25. Ribeiro J. d. O. N., Vasconcelos D. C. L., Vasconcelos W. L. // Materials Research. 2018. V. 22. № 1. P. e20180651. https://doi.org/10.1590/1980-5373-MR-2018-0651
26. Mahato B. N. // Canadian Journal of Chemistry. 2021. V. 100. № 1. P. 9-17. https://doi.org/10.1139/cjc-2021-0201
27. Серебренников Д. В., Григорьева Н. Г., Аглиуллин М. Р. // Современные молекулярные сита. 2022. V. 4. № 2. P. 86-94. https://doi.org/10.53392/27130304_2022_4_2_86
28. Аристов Ю. И. Композитные сорбенты "соль в пористой матрице": синтез, свойства, применение. Изд-во Сибирского отд-ния Российской акад. наук, 2008 с.
29. Charan P., Rao G. R. // Journal of Chemical Sciences. 2015. V. 127. P. 909-919. https://doi.org/10.1007/s12039-015-0847-5
30. Li Y., Li N., Tu J., al e. // Materials Research Bulletin. 2011. V. 46. № 12. P. 2317-2322. https://doi.org/10.1016/j.materresbull.2011.08.044
31. Hien N. T. T., Kien P. T., Vu N. A. // Kataliz v promyshlennоsti. 2018. V. 18. № 5. P. 31-36. https://doi.org/10.18412/1816-0387-2018-5-31-36
32. Фенелонов В. Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. Изд-во Сиб. отд-ния Рос. акад. наук, 2004. ‒ 440 с.
33. Rouquerol J., Rouquerol F., Llewellyn P. Adsorption by powders and porous solids: principles, methodology and applications. Academic press, 2013. ‒ 646 с.
34. Jaroniec M., Solovyov L. A. // Langmuir. 2006. V. 22. № 16. P. 6757-6760. https://doi.org/10.1021/la0609571
35. Айлер Р. Химия кремнезема. Мир, 1982. ‒ 712 с.
36. Handke M., Mozgawa W., Nocuń M. // Journal of molecular structure. 1994. V. 325. P. 129-136. https://doi.org/10.1016/0022-2860(94)80028-6
37. Гаврилова Н., Назаров В. Анализ пористой структуры на основе адсорбционных данных. Российский химико-технологический университет им. Д.И. Менделеева, 2015. ‒ 132 с.
38. Donohue M., Aranovich G. // Journal of colloid and interface science. 1998. V. 205. № 1. P. 121-130. https://doi.org/10.1006/jcis.1998.5639
39. Mel’gunova E., Shmakov A., Larichev Y. V., Mel’gunov M. // Kinetics and Catalysis. 2009. V. 50. P. 456-460. https://doi.org/10.1134/s0023158409030185
Review
For citations:
Novikova S.A., Eremina A.O., Kirik S.D., Zaiceva Y.N., Taran O.P. Structural and morphological features of Al-SBA-15 composites. Kataliz v promyshlennosti. 2025;25(6):3-11. (In Russ.) https://doi.org/10.18412/1816-0387-2025-6-3-11
JATS XML





















